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MATHEMATICS
AND COMPUTER SCIENCE

I. CALCULUS

The principal topics in calculus are the real and complex
number systems, the concept of limits and convergence, and
the properties of functions.

Convergence of a sequence of numbers xi is defined as fol-
lows:

The sequence xi converges to the limit x∗ if, given any tol-
erance ε > 0, there is an index N = N(ε) so that for all i ≥ N we
have |xi − x∗| ≤ ε. The notation for this is

lim
i→∞

xi = x∗.

Convergence is also a principal topics of numerical computa-
tion, but with a different emphasis. In calculus one studies
limits and convergence with analytic tools; one tries to obtain
the limit or to show that convergence takes place. In compu-
tations, one has the same problem but little or no theoretical
knowledge about the sequence. One is frequently reduced to
using empirical intuitive tests for convergence; often the prin-
cipal task is to actually estimate the value of the tolerance for
a given x.

The study of functions in calculus revolves about continu-
ity, derivatives, and integrals. A function f(x) is continuous
if

lim
xi→x∗

f(xi) = f(x∗)

holds for all x∗ and all ways for the xi to converge to x∗. We
list six theorems from calculus which are useful for estimating
values that appear in numerical computation.
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Theorem 1 (Mean value theorem for continuous functions). Let
f(x) be continuous on the interval [a, b]. Consider points XHI and XLOW
in [a, b] and a value y so that f(XLOW ) ≤ y ≤ f(XHI).Then there is a
point ρ in [a, b] so that

f(ρ) = y

.

Theorem 2 (Mean value theorem for sums). Let f(x) be contin-
uous on the interval [a, b], let x1, x2, . . . , xn be points in [a, b] and let
w1, w2, . . . , wn be positive numbers. Then there is a point ρ in [a, b] so
that

n
∑

i=1

wi(x)f(xi) = f(ρ)
n

∑

i=1

wi.

Theorem 3 (Mean value theorem for integrals). Let f(x) be contin-
uous on the interval [a, b] and let w(x) be a nonnegative function [w(x) ≥ 0]
on [a, b]. Then there is a point ρ in [a, b] so that

∫ b

a
w(x)f(x)dx = f(ρ)

∫ b

a
w(x)dx.

Theorems 2 and 3 show the analogy that exists between
sums and integrals. This fact derives from the definition of the
integral as

∫ b

a
f(x)dx = lim

max |xi+1−xi|→0

∑

i

f(xi)(xi+1 − xi),

where the points xi with xi < xi+1 are a partition of [a, b]. This
analogy shows up for many numerical methods where one varia-
tion applies to sums and another applies to integrals. Theorem
2 is proved from Theorem 1, and then Theorem 3 is proved by
a similar method. The assumption that w(x) ≥ 0(wi > 0) may
be replaced by w(x) ≤ 0(wi < 0) in these theorems; it is essential
that w(x) be on one sign shown by the example w(x) = f(x) = x
and [a, b] = [−1, 1].
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Theorem 4 (Continuous functions assume max/min values). Let
f(x) be continuous on the interval [a, b] with |a|, |b| ≤ ∞. Then there are
points XHI and XLOW in [a, b] so that for all x in [a, b]

f(XHI) ≤ f(x) ≤ f(XLOW ).

The derivative of f(x) is defined by

df
dx

= f ′(x) = lim
h→0

f(x + h)− f(x)
h

.

As an illustration of the difference between theory and practice,
the quantity [f(x + h) − f(x)]/h can be replaced by f(x + h) −
f(x − h)]/(2h) with no change in the theory but with dramatic
improvement in the rate of convergence; that is, much more
accurate estimates of f ′(x) are obtained for a given value of h.
The k−th derivative is the derivative of the (k− 1)th derivative;
they are denoted by dkf/dxk or f ′′(x), f ′′′(x), f (4)(x), f (5)(x), . . .

Theorem 5 (Mean value theorem for derivatives). Let f(x) be
continuous and differentiable in [a, b], with |a|, |b| < ∞. Then there is a
point ρ in [a, b] so that

f(b)− f(a)
b− a

= f ′(ρ)

f(x) = f(c) + f ′(ρ)(x− c)

The special case of Theorem 5. with f(a) = f(b) = 0 is known
as Rolle’s theorem. It states that if f(a) = f(b) = 0, then there
is a point ρ between a and b so that f ′(ρ) = 0. This is derived
from Theorem 5 by multiplying through by b− a, renaming a, b
as x, c, and then applying the first form to the smaller interval
[x, c] or [c, x], depending on the relation between x and c.

A very important tool in numerical analysis is the extension
of the second part of Theorem 5 to use higher derivatives.
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Theorem 6 (Tailor series with remainder). Let f(x) have n + 1
continuous derivatives in [a, b].

Given points x and c in [a, b] we have

f(x) = f(c)+f ′(c)(x−c)+f ′′(c)
(x− c)2

2!
+f ′′′

(x− c)3

3!
+· · ·+f (n)(c)

(x− c)n

n!

+R(n + 1)(x),

where Rn+1 has either one of the following forms (ρ is a point
between x and c):

Rn+1(x) = f (n+1)(ρ)
(x− c)n+1

(n + 1)!

Rn+1(x) =
1
n!

∫ x

c
(x− t)nf (n+1)(t)dt

If a function f depends on several variables, one can differenti-
ate it with respect to one variable, say x, while keeping all the
rest fixed. This is a partial derivative of f and it is denoted by
δf/δx or fx. Higher order and mixed derivatives are defined by
successive differentiation. Taylor’s series for functions of sev-
eral variables is a direct extension of the formula in Theorem
6, although the number of terms in it grows rapidly. For two
variables it is

f(x, y) = f(c, d)+ fx(x− c)+ fy(y−d)+
1
2
[fxx(x− c)2 +2fxy(x− c)(y−d)

+fyy(y − d)2] + · · · ,

where all the partial derivatives are evaluated at the point (c, d).

Theorem 7 (Chain rule for derivatives). Let f(x, y. . . . , z) have con-
tinuous first partial derivatives with respect to all its variables. Let
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x = x(t), y = y(t), . . . , z = z(t) be continuous differentiable functions of
t. Then

g(t) = f(x(t), y(t), . . . , z(t))

is continuously differentiable and

g′(t) = fxx′(t) + fyy′(t) + · · ·+ fzz′(t).

Finally, we state

Theorem 8 (Fundamental theorem of algebra). Let p(x) be a poly-
nomial of degree n ≥ 1, that is,

p(x) = a0 + a1x + a2x2 + · · ·+ anxn,

where the ai are real or complex numbers and an 6= 0. Then, there is a
complex number ρ so that p(ρ) = 0.



Numerical Methods 6

II. VECTORS, MATRICES, AND LINEAR EQUATIONS

Vectors are directed line segments (they have length, direc-
tion, and position) in N-dimensional space. They are consid-
ered to be column vectors unless otherwise stated, and thus

y =









y1

y2
...

yN









The transpose is indicated by the superscript T , which changes
columns into rows and vice versa. Vectors are usually expressed
in terms of a basis; a standard set b1, b2, . . . , bN of vectors is
chosen, and all other vectors are expressed in terms of the basis
Bi, i = 1, 2, . . . , N :

y = y1b1 + y2b2 + · · ·+ yNbN.

The coefficients yi of this representation are the components of
y and the representation is commonly written in the compact
form

y = (y1, y2, . . . , yN )T .

The basis vectors define a coordinate system, and the compo-
nents yi are the coordinates of the point at the end of the vector.
The usual basis vectors are of the form (0, 0, . . . , 0, 1, 0, . . . , 0, 0).
The standard arithmetic operations are (for vectors x,y, z, and
scalar a) as follows:

Addition :
x + y = y + x = (x1 + y1,x2 + y2, . . . ,xN + yN)T

x− y = −(y − x); (x + y) + z = x + (y + z)

Multiplication(byscalar) :
ax = (ax1, ax2, . . . , axN)

a(x + y) = ax + ay
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A set x1,x2, . . . ,xn of vectors is linearly independent if no lin-
ear combination

∑N
i=1 αixi of them is zero except for the zero

combination; that is

N
∑

i=1

αixi = 0 implies αi = 0 for all i.

A set of vectors x1,x2, . . . ,xN spans a space if every vector in
that space can be written as a linear combination of the set
x1,x2, . . . ,xN. A set of basis vectors must be linearly indepen-
dent. The dimension of a vector space is the minimal number
of vectors required to span the space; each basis of an N di-
mensional space must have N vectors in it.

The dot product or inner product of two vectors x and y is

xT y = (xy) =
N

∑

i=1

xiyi

Two vectors are orthogonal vectors (perpendicular) if xTy = 0.
The size of a vector may be measured by the Euclidean norm
||x||2 where

||x||22 = xTx =
∑

i

x2
i .

This is the usual Euclidean length in the case of two or three
dimensions. The double bar denotes a norm, and another norm
frequently convenient is

||x||∞ = max
i
|xi|.

The angle θ between two vectors is defined from

cos θ =
xTy

||x||2||y||2
.
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The format for vector must mach that of matrices, and so vec-
tors are normally considered to be column vectors. To write a
vector as

y =







2
1
4
−2







complicates the format of the text, and so we write x as
(2, 1, 4,−2)T and, in general, write vectors horizontally with the
transpose T unless the column format is necessary for clarity.
At times we also use row vectors, which are vectors whose ma-
trix format is actually horizontal, e.g. a row from a matrix.

Once coordinates are introduced for the vectors, then linear
functions of vectors can be concretely represented by a two-
dimensional array of numbers, a matrix:

y =





1 6 −2
4 17 −12
0 42 6.1



 = (aij)

If y is a linear function of xi then each component yk of y is a
linear function of the components xi of x, and we have for each
k that

yi = ak1xi + ak2x2 + . . . + akNxN .

The coefficients are collected into the matrix A, and the linear
function is denoted by Ax.

The rules for manipulating matrices are those required by
the linear mappings.Thus A+B is to be the representation of the
sum of the two linear functions represented by A and B.One
has A + B = C where cij = aij + bij. The matrix product AB
represents the effect of applying the function B, then applying
the function A. The following calculation shows that

AB = C,
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where cij =
∑

k aikbkj . We have y = Bx and z = Ay and want to
determine C so that z = Cx. We express the relationship in
terms of components:

yk =
N

∑

j=1

bkjxj zi =
N

∑

k=1

aikyk.

Thus

zi =
N

∑

k=1

aik
(

N
∑

j=1

bkjxj
)

=
N

∑

j=1

(

N
∑

k=1

aikbkj
)

xj =
N

∑

j=1

cijxj ,

and so cij is given by the above formula. The (i, j)-th element
of C is the dot product of the row of A with the j-th column
of B. We have the arithmetic rules

A + B = B + A

AB 6= BA except in special cases.

The transpose AT of A is obtained by reflecting A about its
diagonal (the aii elements). That is, aT

ij = aji. The identity
matrix is all zeros except for 1 on the diagonal:

I =





1 0 0
0 1 0
0 0 1





An identity matrix is necessarily square (have the same number
of rows and columns). One sees that IA = AI = A. The inverse
A−1 of A is a matrix so that AA−1 = I. Not all matrices have
an inverse and, indeed, one can have AB = 0 without either A
or B being the zero matrix:

(

1 1
1 1

)(

1 1
−1 −1

)

=
(

0 0
0 0

)
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If A has an inverse, then we say A is nonsingular. We have the
following equivalent statements for a square matrix A:

- A is nonsingular
- A−1exists
- The columns of A are linearly independent
- The rows of A are linearly independent
- Ax = 0 implies that x = 0.

The linear equations problem is this: Given A and b, find
the vector x so that Ax = b. If A is nonsingular (this makes A
square), then this problem has always a unique solution for each
b. If A has more rows than columns (there are more equations
than variables), then the problem is usually unsolvable, and
if A has more columns than rows. there are usually infinitely
many solutions. A system of equations is homogeneous if the
right side is zero, for example Ax = 0. The oldest and standard
method for solving this problem is by Gauss elimination (forget
Cramer’s rules - why ?). By Gauss elimination one gets up-
per triangular matrix (with all elements below the diagonal are
zero) and lower triangular matrix means that all elements above
the diagonal are zero. After elimination process, one uses back
substitution (for upper triangular) or forward substitution (for
lower triangular matrix, in order to solve quickly the system.

Gauss elimination is illustrated by the following example.
Given the system

2x1 +2x2 +4x3 = 5
6x1 −x2 +x3 = 7
4x1 −10x2 −12x3 = −4

By subtracting 3 times row 1 from row 2, and by subtracting
2 times row 1 from row 3, one gets

2x1 +2x2 +4x3 = 5
−7x2 −11x3 = −8
−14x2 −20x3 = −14,
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and then, by subtracting 2 times row 2 from row 3,

2x1 +2x2 +4x3 = 5
−7x2 −11x3 = −8

2x3 = 2.

Finally, by back substitution, one gets the solutions:

x3 =
2
2

= 1

−7x2 = −8 + 11x3 = 3, so x2 = −3
7

2x1 = 5− 2x2 − 4x3 =
13
7

so x3 =
13
14

.

A matrix is permutation matrix if each element is a 0 or 1
and there is exactly one 1 per row or column, for example:







0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1











1 0 0
0 0 1
0 1 0





Multiplication by a permutation matrix, on the left or right, has
the effect of permuting or interchanging the rows or columns of
the matrix. This property gives them their name, and they are
useful in formulas to indicate interchanges of rows and columns;
they are rarely used in actual calculations.

In some occasions we refer to an eigenvalues of the matrix
A. This is a number λ such that Ax = λx for some nonzero vec-
tor x; the vector x is called an eigenvector. A linear mapping
applied to an eigenvector simply multiplies the eigenvector by
the constant λ, the eigenvalue. An N by N matrix has N eigen-
values and normally, but not always, has N eigenvectors. The
spectral radius ρ(A) of A is the largest of the absolute values of
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the eigenvalues of A. The spectral radius plays a fundamental
role in the convergence of iterations involving matrices.

The norm of matrix will be mentioned some later, regarding
convergence process of iteration procedure for solving a system
of linear algebraic equations.
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III. PROGRAMMING

There are several areas of knowledge about programming
that are needed for scientific computation. These include
knowledge about:

- The programming language (FORTRAN, Pascal, C, Java,
Mathematica (MatCAD, Matlab).

- The computer system in which the language runs
- Program debugging and verifying the correctness of results
- Computation organization and expressing them clearly.

Debugging programs is an art as well as a science, and it
must be learned through practice. There are several effective
tactics to use, like:

- Intermediate output
- Consultations about program with experienced user
- Use compiler and debugging tools.

Some abilities of compilers:
- Cross-reference tables
- Tracing
- Subscript checking
- Language standards checking.

Some hints:
- Use lots of comments
- Use meaningful names for variables
- Make the types of variables obvious
- Use simple logical control structures
- Use program packages and systems (Mathematica, Matlab)

wherever possible
- Use structured programming
- Use (if possible) OOP technics for technical problems.
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IV. NUMERICAL SOFTWARE

There are several journals that publish individual computer
programs:

- ACM Transactions on Mathematical Software (IMSL,Inter-
national Mathematical Scientific Library)

- Applied Statistics
- BIT
- The Computer Journal
- Numerische Mathematik

The ACM Algorithms series contains more than thousand
items and is available as the Collected Algorithms of the Asso-
ciation for Computing Machinery.

Three general libraries of programs for numerical compu-
tations are widely available:

IMSL- IMSL, Inc.
NAG- Numerical Algorithms Group, Oxford University
SSP- Scientific Subroutine Package, IBM Corporation

There are also several general statistical program libraries,
like:

BMD- BioMedical Department, UCLA
GPSS-

SOFTWARE PACKAGES

There are a substantial number of important, specialized
software packages. Most of the packages listed below are avail-
able from IMSL, Inc.
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MP- Multiple Precision Arithmetic Package
BLAS- Basic Linear Algebra Subroutines

DEPACK- Differential Equation Package
DSS- Differential System Simulator

EISPACK- Matrix Eigensystems Routines
FISHPACK- Routines for the Helmholtz Problem in Two or Three

Dimensions
FUNPACK- Special Function Subroutines

ITPACK- Iterative Methods
LINPACK- Linear Algebra Package
PPPACK- Piecewise Polynomial and Spline Routines

ROSEPACK- Robust Statistics Package
ELLPACK- Elliptic Partial Differential Equations

SPSS- Statistical Package for the Social Sciences.

User interface to the IMSL library:)

PROTRAN-
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V. CASE STUDY: ERRORS, ROUND-OFF, AND STABIL-
ITY

V.1. Solve quadratic formula

ax2 + bx + c = 0

with 5, 10, 15, . . . 100 decimal digits using FORTRAN and Math-
ematica code. Take a = 1, c = 2, b = 5.2123(10)105.2123. Use the
following two codes:

DIS=SQRT(B*B-4.*A*C) DIS=SQRT(B*B-4.*A*C)
X1=(-B+DIS)/(2*A) IF(B.LT.0) THEN
X2=(-B-DIS)/(2*A) X1=(-B+DIS)/(2*A)

ELSE
X1=(-B-DIS)/(2*A)
ENDIF
X2=C/X1

Compare the obtained results.
There are two important lessons to be learned from example

V.1.:
1. Round-off error can completely ruin a short, simple com-

putation.
2. A simple change in the method might eliminate adverse

round-off effects.

V.2. Stability

Some computations are very sensitive to round-off and oth-
ers are not. In the example given above, sensitivity to round-off
was eliminated by changing the formula or method. This is al-
ways possible; there are many problems which are inherently
sensitive to round-off and any other uncertainties. Thus we
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must distinguish between sensitivity of methods and sensitivity
inherent in problems.

The word stability appears during numerical computations
and refers to continuous dependence of a solution on the data
of the problem or method. If one says that a method is numer-
ically unstable, one means that the round-off effects are grossly
magnified by the method. Stability also has precise technical
meaning (not always the same) in different areas as well as in
this general one.

Solving differential equations usually leads to difference
equations, like

xi+2 = −(13/6)xi+1 + (5/2)xi.

Here, the sequence x1, x2, . . . is defined, and for given initial con-
ditions x1 and x2 of differential equation, we get the initial con-
ditions for difference equation. For example, x1 = 30, x2 = 25.
Computing in succession for 4, 8, 16, 32, 64 decimal digits gives
the results that can be compared with the exact one, xi =
36/(5/6)i. (Compute in Mathematica, using N [x[I + 2], k], where
k = 4, 8, 16, 32, 64 number of decimal digits).

i 4 8 16 True value
1 30.00 30.00 30.00 30.00
2 25.00 25.00 25.00 25.00
3 20.83 20.8333 20.8333 20.8333
4 17.36 17.3611 17.3611 17.3611
5 14.46 14.4676 14.4676 14.4676
6 12.07 12.0563 12.0563 12.0563
7 10.00 10.0470 10.0469 10.0469
8 8.518 8.3724 8.3724 8.3724
9 6.541 6.9773 6.9770 6.9770
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10 7.121 5.8133 5.8142 5.8142
11 .925 4.8478 4.8452 4.8452
12 15.790 4.0296 4.0376 4.0376
13 −31.920 3.3888 3.3647 3.3647
14 108.700 2.7318 2.8039 2.8039
16 954.600 1.2978 1.9472 1.9472
18 8576.000 −4.4918 1.3522 1.3522
20 77170.000 −51.6565 .9390 .9390
22 6.9× 105 −472.7080 .6521 .6521
25 −1.8× 107 12781.1000 .3776 .3774
28 5.0× 108 −345079.0000 .2134 .2184
30 4.5× 109 −3.1× 106 .1071 .1517
35 −1.1× 1012 7.5× 108 10.8822 .0609
40 −1.1× 1014 −1.8× 1011 −2629.5300 .0245
50 1.5× 1019 −1.0× 1016 −1.5× 108 .0039
75 1.3× 1031 9.2× 1027 1.3× 1020 .00

This difference equation is unstable and one can see that
the computation quickly ”blows up”. One nice thing about
unstable computation is that they usually produce huge, non-
sense numbers that one is not tempted to accept as correct.
However, imagine that one wanted only 30 terms of the xi and
was using the computer with 16 decimal digits. How would one
know that the last term is in error by 50 percent ?

The word condition is used to describe the sensitivity of
problems to uncertainty. Imagine the solution of a problem
being obtained by evaluation a function f(x). Then, if x is
changed a little to x + δx, the value f(x) also changes. The
relative condition number of this change is

|f(x + δx)− f(x)|
|f(x)|

/∣

∣

δx
x

∣

∣,
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or
f(x + δx)− f(x)

δx
× x

f(x)
,

and, for δx very small, condition number c is

c ∼ xf ′(x)
f(x)

.

This number estimates how much an uncertainty in the data x
of a problem is magnified in its solution f(x). If this number is
large, then the problem is said to be ill-conditioned or poorly
conditioned.

The given formula is for the simplest case of a function of a
single variable; it is not easy to obtain such formulas for more
complex problems that depend on many variables of different
types. We can see three different ways that a problem can have
a large condition number:

1. f ′(x) may be large while x and f(x) are not;
If we evaluate 1 +

√

|x− 1| for x very close to 1, then x and
f(x) are nearly 1, but f ′(x) is large and the computed value is
highly sensitive to change in x.

2. f(x) may be small while x and f ′(x) are not;
The Taylor’s series for sin x near π or exp−x with x large

exhibit this form of ill conditioning.

3. x may be large while f ′(x) and f(x) are not;
The evaluation of sin x for x near 1000000π is poorly condi-

tioned.
One can also say that computation is ill-conditioned and

this is the same as saying it is numerically unstable. The condi-
tion number gives more information than just saying something
is numerically unstable. It is rarely possible to obtain accurate
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values for condition numbers but one rarely needs much accu-
racy; an order of magnitude is often enough to know.

Note that is almost impossible for a method to be numeri-
cally stable for an ill-conditioned problem.

Example 5.1 An ill-conditioned line intersection problem con-
sists in computing the point of intersection P of two nearly par-
allel lines. It is clear that a minor change in one line changes
the point of intersection to (P + δP ) which is far from P . A
mathematical model of this problem is obtained by introduc-
ing a coordinate system and writing equations

y = a1x + b1

y = a2x + b2

what leads to solving a system of equations

a1x− y = −b1

a2x− y = −b2

with the a1 and a2 nearly equal since the lines are nearly par-
allel. This numerical problem is unstable or ill-conditioned, as
it reflects the ill-conditioning of the original problem.

A mathematical model is obtained by introducing a coor-
dinate system. Any two vectors will do for a basis, and if we
chose to use the unusual basis

b1 = (0.5703958095, 0.8213701274)

b2 = (0.5703955766, 0.8213701274)

then every vector x can be expressed as

x = xb1 + yb2
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so that the equations of the two lines in this coordinate system
are

y = −0.0000000513 + 0.9999998843x

y = −0.0000045753 + 1.000001596x

with the point of intersection P with coordinates
(−0.8903429339, 0.8903427796). Note that mathematical model is
very ill-conditioned; a change of 0.0000017117 in the data makes
the two lines parallel, with no solution.

The poor choice of a basis in the given example made the
problem poorly conditioned. In more complex problems it is
not so easy to see that a poor choice has been made. In fact,
a poor choice is sometimes the most natural thing to do. For
example, in problems involving the polynomials, one naturally
takes vectors based on 1, x, x2, . . . , xn as a basis, but there are
terribly ill-conditioned even for n moderate in size.

Example 5.2 System of equations (input information)

2x + 6y = 8

2x + 6.0001y = 8.0001

have a solutions (output information) x = 1, y = 1. If the coef-
ficients of second equation slightly change, i.e. if one takes the
equation

2x + 5.99999y = 8.00002,

the solutions are x = 10, y = −2. This is typical round-off error.
Errors in methods occur usually because in numerical

mathematics the problem to be solved is replaced by another
one, closed to original, which is easier to solve.

Example 5.3 Integral
∫ b

a f(x)dx can be approximately calcu-
lated, for example, by replacing the function f by some poly-
nomial P on segment [a, b], which is in some sense close to given
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function. However, for approximative calculation it is possible
to use the sum

n
∑

i=1

f(xi)∆xi.

In both cases the method error occurs.
In some sense, the round-off error are also method errors.

Sum of all errors makes the total error.

V.3. Case study: Calculation of π

Using five following algorithms, calculate π in order to il-
lustrate the various effects of round-off on somewhat different
computations.

Algorithm 1. Infinite alternate series

π = 4(1− 1/3 + 1/5− 1/7 + 1/9− · · ·)

Algorithm 2. Taylor’s series of arcsin(1/2) = π/6

π = 6(0.5 +
(0.5)2

2× 3
+

1× 3(0.5)4

2× 4× 5
+

1× 3× 5(0.5)6

2× 4× 6× 7
+ · · ·)

Algorithm 3. Archimedes’ method. Place 4, 8, 16, . . . , 2n tri-
angles inside a circle. The area od each triangle is 1/2 sin(θ).
The values of sin(θ) are computed by the half angle formula

sin(θ) =
√

[1− cos(2θ)]/2

and
cos(θ) =

√

1− sin2 θ.

The calculation is initialized by sin(π/4) = cos(π/4) = 1/
√

2. As
the number of triangles grows, they fill up the circle and their
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total area approaches π. (Archimed carried a similar procedure
by hand with 96 triangles and obtained

3.1409 . . . = 3
1137
8069

< π < 3
1335
9347

= 3.1428 . . .)

Algorithm 4. Instead of inscribing triangles in a circle, we
inscribe trapezoids in a quarter circle. As a number of trape-
zoids increases, the sum of their areas approaches π/4.

Algorithm 5. Monte Carlo integration.
(Monte Carlo integration for

∫ 2
0

2
1+x dx is proceeded by

choosing a pair (x, y) at random with x, y in [0, 2], and compare
y with 2/(1 + x). If y ≤ 2/(1 + x) then the point (x, y) is under the
curve y = 2/(1 + x) and variable SUM is increased by 1. After M
pairs, the integral is estimated by the fraction SUM/M of points
that are under the curve).

V.4. How to estimate errors and uncertainty

One almost newer knows the error in a computed result
unless one already knows the true solution, and so one must
settle for estimates of the error. There are three basic ap-
proaches to error estimates. The first is forward error analysis,
when one uses the theory of the numerical method plus infor-
mation about the uncertainty in the problem and attempts to
predict the error in the computed result. The information one
might use includes

- the size of round-off,
- the measurement errors in problem data,
- the truncation errors in obtaining the numerical model

from the mathematical model,
- the differences between the mathematical model and the

original physical model.
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The second approach is backward error analysis, where one
takes a computed solution and sees how close it comes to solv-
ing the original problem. The backward error is is often called
the the residual in equations. This approach requires that the
problems involve satisfying some conditions (such as an equa-
tion) which can be tested with a trial solution. This prevents it
from being applicable to all numerical computations, e.g. nu-
merically estimating the value of π or the value of an integral.

The third approach is experimental error analysis, where one
experiments with changing the computations, the method, or
the data to see the effect they have on the results. If one truly
wants certainty about the accuracy of a computed value, then
one should give the problem to two (or even more) different
groups and ask to solve it. The groups are not allowed to talk
together, preventing a wrong idea from being passing around.

The relationship between these three approaches could be
illustrated graphically, as given in the following figure.

(figure missed)


