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LECTURES

LESSON V

Eigensystems

An N x N matrix A is said to have an eigenvector x and
corresponding eigenvalue X\ if

(V.1) A -x=)x

Obviously any multiple of an eigenvector x will also be an eigen-
vector, but we won’t consider such multiples as being distinct
eigenvectors. (The zero vector is not considered to be an eigen-
vector at all). Evidently (V.1) can hold only if

(V.2) det| A — 1| = 0,

which, if expanded out, is an Nth degree polynomial in A whose
roots are the eigenvalues. This proves that there are always N
(not necessarily distinct) eigenvalues. Equal eigenvalues com-
ing from multiple roots are called degenerate. Root searching
in the characteristic equation (V.2) is usually a very poor com-
putational method for finding eigenvalues. We will learn much
better ways, as well as efficient ways for finding corresponding
eigenvectors.
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The above two equations also prove that every one of the
N eigenvalues has a (not necessarily distinct) corresponding
eigenvector: If ) is set to an eigenvalue, then the matrix A — I
is singular, and we know that every singular matrix has at
least one nonzero vector in its nullspace (consider singular value
decomposition).

If you add 7x to both sides of (V.1), you will easily see that
the eigenvalues of any matrix can be changed or shifted by an
additive constant r by adding to the matrix that constant times
the identity matrix. The eigenvectors are unchanged by this
shift. Shifting, as we will see, is an important part of many
algorithms for computing eigenvalues. We see also that there
is no special significance to a zero eigenvalue. Any eigenvalue
can be shifted to zero, or any zero eigenvalue can be shifted
away from zero.

Definitions

A matrix is called symmetric if it is equal to its transpose,
(V?)) A= AT or a;; = ay;

It is called Hermitian or self-adjoint if it equals to the
complex-conjugate its transpose (its Hermitian conjugate, de-
noted by ”1”)

(V4) A = xAJr or a;; = as

71
It is termed orthogonal if its transpose equals its inverse
(V.5) AT . A=A.-AT=1

and unitary if its Hermitian conjugate equals its inverse. Fi-
nally, a matrix is called normal if it commutes with its Hermi-
tian conjugate,

(V.6) A-AT=AT.A
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For real matrices, Hermitian means the same as symmet-
ric, unitary means the same as orthogonal, and both of these
distinct classes are normal.

The reason that ”Hermitian” is an important concept has
to do with eigenvalues. The eigenvalues of a Hermitian matrix
are all real. In particular, the eigenvalues of a real symmetric
matrix are all real. Contrariwise,the eigenvalues of a real non-
symmetric matrix may include real values, but may also include
pairs of conjugate values; and the eigenvalues of a complex ma-
trix that is not Hermitian will in general be complex.

The reason that "normal” is an important concept has to
do with the eigenvectors. The e eigenvectors of a normal ma-
trix with nondegenerate (i.e., distinct) eigenvalues are complete
and orthogonal, spanning the N-dimensional vector space. For
a normal matrix with degenerate eigenvalues, we have the addi-
tional freedom of replacing the eigenvectors corresponding to a
degenerate eigenvalue by linear binations of themselves. Using
this freedom, we can always perform Gramm-Schmidt orthog-
onalization and find a set of eigenvectors that are complete
and orthogonal, just as in the nondegenerate case. The matrix
whose columns are an orthonormal set of eigenvectors is evi-
dently unitary. A special case is that the matrix of eigenvectors
of a real symmetric matrix is orthogonal, since the eigenvectors
of that matrix are all real.

When a matrix is not normal, as typified by any random,
nonsymmetric, real matrix, then in general we cannot find any
orthonormal set of eigenvectors, nor even any pairs of eigen-
vectors that are orthogonal (except perhaps by rare chance).
While the N non-orthonormal eigenvectors will "usually” span
the N-dimensional vector space, they do not always do so; that
is, the eigenvectors are not always complete. Such a matrix is
said to be defective.
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Left and Right Eigenvectors

While the eigenvectors of a non-normal matrix are not par-
ticularly orthogonal among themselves, they do have an or-
thogonality relation with a different set of vectors, which we
must now define. Up to now our eigenvectors have been col-
umn vectors that are multiplied to the right of a matrix A, as
n (V.1). These, more explicitly, are termed right eigenvectors.
We could also, however, try to find vectors, which multiply A
to the left and satisfy

(V.7) XA =)Ax

These are called left eigenvectors. By taking the transpose
of (11.0.7), one can see that every left eigenvector is the trans-
pose of a right eigenvector of the transpose of A . Now by
comparing to (11.0.2), and using the fact that the determinant
of a matrix equals the determinant of its transpose, we also see
that the left and right eigenvalues of A are identical.

If the matrix A is symmetric, then the left and right eigen-
vectors are just transposes of each other, that is, have the same
numerical values as components. Likewise, if the matrix is self-
adjoint, the left and right eigenvectors are Hermitian conju-
gates of each other. For the general non-normal case, however
we have the following calculation: Let Xg be the matrix formed
by columns from the right eigenvectors, and Xy, be the matrix
formed by rows from the left eigenvectors. Then (V.1) and (V.7)
can be rewritten as

(V8) A - XR = XR : diag()\l ce )\N) XL A= diag()\l ce )\N) . XL

Multiplying the first of these equations on the left by X;, the
second on the right by Xz, and subtracting the two, gives
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This says that the matrix of dot products of the left and right
eigenvectors commutes with the diagonal matrix of eigenvalues.
But the only matrices that commute with a diagonal matrix of
distinct elements are themselves diagonal. Thus,if the eigenval-
ues are nondegenerate, each left eigenvector is orthogonal to all
right eigenvectors except its corresponding one, and vice versa.
By choice of normalization, the dot products of corresponding
left and right eigenvectors can always be made unity for any
matrix with nondegenerate eigenvalues.

If some eigenvalues are degenerate, then either the left or
the right eigenvectors corresponding to a degenerate eigenvalue
must be linearly combined among themselves to achieve orthog-
onality with the right or left ones, respectively. This can always
be done by a procedure akin to Gram-Schmidt orthogonaliza-
tion. The normalization can then be adjusted to give unity for
the nonzero dot products between corresponding left and right
eigenvectors.If the dot product of corresponding left and right
eigenvectors is zero at this stage, then you have a case where
the eigenvectors are incomplete! Note that incomplete eigen-
vectors can occur only where there are degenerate eigenvalues,
but do not always occur in such cases (in fact, never occur for
the class of "normal” matrices). See [1] for a clear discussion.

In both the degenerate and nondegenerate cases, the final
normalization to unity of all nonzero dot products produces
the result: The matrix whose rows are left eigenvectors is the
inverse matrix of the matrix whose columns are right eigenvec-
tors, if the inverse exists.

Diagonalization of a Matrix

Multiplying the first equation in (V.8) by X, and using the
fact that X; and Xz are matrix inverses, we get
(V.10) X5 A Xg =diag(\r ... \y)
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This is a particular case of a similarity transform of the
matrix A,

(V.11) A—Z 1A Z

for some transformation matrix Z. Similarity transforma-
tions play a crucial role in the computation of eigenvalues, be-
cause they leave the eigenvalues of a matrix unchanged. This
is easily seen from

det|Z=' - A -Z — M| =det|Z7' - (A — \]) - Z|
(V.12) = det|Z| det|A — | det|Z™ |
= det|A — M|

Equation (V.10) shows that any matrix with complete eigen-
vectors (which includes all normal matrices and ”most” random
non-normal ones) can be diagonalized by a similarity transfor-
mation, that the columns of the transformation matrix that
effects the diagonalization are the right eigenvectors, and that
the rows of its inverse are the left eigenvectors.

For real, symmetric matrices, the eigenvectors are real and
orthonormal, so the transformation matrix is orthogonal. The
similarity transformation is then also an orthogonal transfor-
mation of the form

(V.13) A—ZT. A Z

While real nonsymmetric matrices can be diagonalized in
their usual case of complete eigenvectors, the transformation
matrix is not necessarily real. It turns out, however that a real
similarity transformation can ”almost” do the job. It can re-
duce the matrix down to a form with little two-by-two blocks
along the diagonal, all other elements zero. Each two-by-two
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block corresponds to a complex-conjugate pair complex eigen-
values. We will see this idea exploited in some routines given
later.

The ”grand strategy” of virtually all modern eigensystem
routines is to nudge the matrix A towards diagonal form by a
sequence of similarity transformations,

A—-P, ' AP PP APL-Py

(V.14) 1 ol e
—>P3 'P2 'Pl APy Py -P3— etc.

If we get all the way to diagonal form, then the eigenvectors
are the columns of the accumulated transformation

(V.15) Xp=P, -Py-Ps-...

Sometimes we do not want to go all the way to diagonal
form. For example, if we are interested only in eigenvalues.
not eigenvectors, it is enough to transform the matrix A to be
triangular, with all elements below (or above) the diagonal zero.
In this case the diagonal elements are already the eigenvalues,
as you can see by mentally evaluating (V.2) using expansion by
minors.

There are two rather different sets of techniques for im-
plementing the grand strategy (V.14). It turns out that they
work rather well in combination, so most modern eigensystem
routines use both. The first set of techniques constructs in-
dividual P;’s as explicit ”atomic” transformations designed to
perform specific tasks, for example zeroing a particular off-
diagonal element (Jacobi transformation), or a whole particu-
lar row or column (Householder transformation), elimination
method). In general, a finite sequence of these simple trans-
formations cannot completely diagonalize a matrix. There are
then two choices: either use the finite sequence of transforma-
tions to go most of the way (e.g., to some special form like
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tridiagonal or Hessenberg) and follow up with the second set
of techniques about to be mentioned; or else iterate the finite
sequence of simple transformations over and over until the de-
viation of the matrix from diagonal is negligibly small. This
latter approach is conceptually simplest, so we will discuss it
in the next section; however, for N greater than ~ 10, it is
computationally inefficient by a roughly constant factor ~ 5.

The second set of techniques, called factorization methods,
is more subtle. Suppose that the matrix A can be factored into
a left factor F; and a right factor Fz. Then

(V.16) A=F; -Fp orequivalently F;'-A=Fp

If we now multiply back together the factors in the reverse
order, and use the second equation in (V.16) we get

(V.17) Fr-F,=F;'-A -Fg

which we recognize as having effected a similarity transforma-
tion on A with the transformation matrix being F;,. The QR
method which exploits this idea will be discussed later.

Factorization methods also do not converge exactly in a
finite number of transformations. But the better ones do con-
verge rapidly and reliably, and, when following an appropriate
initial reduction by simple similarity transformations, they are
the methods of choice.
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Software eigenpackages

Almost all software routines in use nowadays trace their
ancestry back to routines published in Wilkinson and Reinsch’s
boock Handbook for Automatic Computation, Vol. II, Linear
Algebra [2]. A public-domain implementation of the Handbook
routines in FORTRAN is the EISPACK set of programs [3]. The
routines presented later are translations of either the Handbook
or EISPACK routines, so understanding these will take a lot of
the way towards understanding those canonical packages.

IMSL [4] NAG [5] each provide proprietary implementations
in FORTRAN of what are essentially the Handbook routines.

A good "eigenpackage” will provide separate routines, or
separate paths through sequences of routines, for the following
desired calculations

e all eigenvalues and no eigenvectors
o all eigenvalues and some corresponding eigenvectors
e all eigenvalues and all corresponding eigenvectors.

The purpose of these distinctions is to save compute time
and storage; it is wasteful to calculate eigenvectors that you
don’t need. Often one is interested only in the eigenvectors
corresponding to the largest few eigenvalues, or largest few in
the magnitude, or few that are negative. The method usually
used to calculate ”some” eigenvectors is typically more efficient
than calculating all eigenvectors if you desire fewer than about
a quarter of the eigenvectors.

A good eigenpackage also provides separate paths for each
of the above calculations for each of the following special forms
of the matrix:

e real, symmetric, tridiagonal
e real, symmetric, banded (only a small number of sub- and
superdiagonals are nonzero)
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e real, symmetric
e real, nonsymmetric
e complex, Hermitian
e complex, non-Hermitian
Again, the purpose of these distinctions is to save time and
storage by using the least general routine that will serve in any
particular application.
In continuation, good routines for the following paths will
be given:
o all eigenvalues and eigenvectors of a real, symmetric, tridi-
agonal matrix
o all eigenvalues and eigenvectors of a real, symmetric, matrix
o all eigenvalues and eigenvectors of a complex, Hermitian
matrix
e all eigenvalues and no eigenvectors of a real, nonsymmetric
matrix.
The discussion how to obtain some eigenvectors of nonsym-
metric matrices by the method of inverse iteration will be given
later.

Generalized and Nonlinear Eigenvalue Problems

Many eigenpackages also deal with the so-called generalized
eigenproblem, (6]

(V.18) A-x=)A-x

where A and B are both matrices. Most such problems, where
B is nonsingular, can be handled by the equivalent

(V.19) B A) - x=)x

Often A and B are symmetric and B is positive definite.
The matrix B~!- A in (V.19) is not symmetric, but we can re-
cover a symmetric eigenvalue problem by using the Cholesky
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decomposition B =L -L*. Multiplying equation (V.18) by L~!
we get

(V.20) C- (L7 -x)=XML" -x)
where
(V.21) C=L"' ALH

The matrix C is symmetric and its eigenvalues are the same
as those of the original problem (V.18); its eigenfunctions are
LT . x The efficient way to form C is first to solve the equation

(V.22) Y- LT=A
for the lower triangle of the matrix Y. Then solve
(V.23) L.-C=Y

for the lower triangle of the symmetric matrix C.
Another generalization of the standard eigenvalue problem
is to problems nonlinear in the eigenvalue ), for example,

(V.24) (AN +BA+C)-x=0
This can be turned into a linear problem by introducing
an additional unknown eigenvector y and solving the 2N x 2N

This technique generalizes to higher-order polynomials in
A. A polynomial of degree M produces a linear M N x M N eigen-
system, as given in [7].

0 I
~A-l.C -A!'B
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