Faculty of Civil Engineering Belgrade Master Study COMPUTATIONAL ENGINEERING Numerical Methods
Fall semester 2005/2006

## Midterm exam

[1] For given (integer) matrix

$$
\mathbf{A}=\left[\begin{array}{lll}
3 & 1 & 6 \\
2 & 1 & 3 \\
1 & 1 & 1
\end{array}\right]
$$

find the inverse, using Gauss-Jordan method.
Hint: Proceed transformation

$$
\left[\begin{array}{lll|lll}
3 & 1 & 6 & 1 & 0 & 0 \\
2 & 1 & 3 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
\mathbf{I} & \mathbf{A}^{-\mathbf{1}} \\
\end{array}\right]
$$

[2] Draw the algorithm for solution of system of equation

$$
\left[\begin{array}{ccc}
10 & 3 & -1 \\
-1 & 5 & -1 \\
1 & 2 & 10
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
12 \\
3 \\
13
\end{array}\right] .
$$

using Jacobi method with exactness $\varepsilon=10^{-3}$ and proceed the first iteration (Take $\vec{x}^{(0)}=\vec{b}$ ).
[3] Draw the algorithm for finding the real root of equation

$$
x^{3}-x-1=0
$$

by iteration method, with $\varepsilon=10^{-3}$. For starting value of $x$ take $x_{0}=1.5$.
[4] Draw the algorithm for root finding of equation

$$
f(x)=e^{-x}-x=0
$$

by Newton method with $\varepsilon=5 \cdot 10^{-2}$. Starting value of $x$ determine graphically.
[5] In the year 1225 explored Leonardo of Pisa the equation

$$
f(x)=x^{3}+2 x^{2}+10 x-20=0
$$

and got the root $x=1.368808107$, using unknown method.
This result was outstanding for that time.
Draw the algorithm and solve the equation of Leonardo by reduction to the form $x=F(x)$ (fixed point method).

Hint: Take

$$
\begin{aligned}
x=F(x) & =\frac{20}{x^{2}+2 x+10}, \text { i.e. } \\
x_{n} & =\frac{20}{x_{n-1}^{2}+2 x_{n-1}+10}, \text { and } x_{0}=1
\end{aligned}
$$

Take $\varepsilon=10^{-3}$.
[6] Approximate function $x \mapsto f(x)=e^{x}$ on interval [0,0.5] by interpolating polynomial (use Lagrange's interpolation formula).
Hint: Function $e^{x}$ given in tabular form

$$
\begin{array}{cccc}
k & 0 & 1 & 2 \\
x_{k} & 0.0 & 0.2 & 0.5 \\
f\left(x_{k}\right) & 1.00000 & 1.221403 & 1.648721
\end{array}
$$

The approximative polynomial is of form $P_{n}(x)=a_{0} x^{n}+a_{1} x_{n-1}+$
$\cdots+a_{n}$, given in Lagrange's form

$$
\begin{aligned}
P_{n}(x) & =\sum_{k=0}^{n} f\left(x_{k}\right) L_{k}(x), \\
L_{k} & =\frac{\left(x-x_{0}\right) \cdots\left(x-x_{k-1}\right)\left(x-x_{k+1}\right) \ldots\left(x-x_{n}\right)}{\left(x_{k}-x_{0}\right) \cdots\left(x_{k}-x_{k-1}\right)\left(x_{k}-x_{k+1}\right) \cdots\left(x_{k}-x_{n}\right)} \\
& =\prod_{\substack{i=0 \\
i \neq k}}^{n} \frac{x-x_{i}}{x_{k}-x_{i}}
\end{aligned}
$$

i.e.

$$
P_{n}(x)=\sum_{k=0}^{n} f\left(x_{k}\right) \prod_{\substack{i=0 \\ i \neq k}}^{n} \frac{x-x_{i}}{x_{k}-x_{i}}
$$

[7] For given table of values $y(x)=\sqrt{x}$ form a table of differences up to $\Delta^{6}$. Apply the table to calculate $\sqrt{1.005}$ with $n=1$ (linear approximation) using Newton's forward differences.

| $k$ | $x_{k}$ | $y(x)=\sqrt{x}$ | $\Delta$ | $\Delta^{2}$ | $\Delta^{3}$ | $\Delta^{4}$ | $\Delta^{5}$ | $\Delta^{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1.0 | 1.0000 |  |  |  |  |  |  |
| 1 | 1.01 | 1.0050 |  | 0 |  |  |  |  |
| 2 | 1.02 | 1.0100 |  | -1 |  | 2 |  |  |
| 3 | 1.03 | 1.0149 | 49 | 0 | 1 |  | -3 |  |
| 4 | 1.04 | 1.0198 | 49 |  | 0 | -1 |  | 4 |
| 5 | 1.05 | 1.0247 | 49 | 0 | 0 |  | 1 |  |
| 6 | 1.06 | 1.0296 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

Hint: The Newton's formula is

$$
P_{k}=y_{0}+\binom{k}{1} \Delta y_{0}+\frac{k}{2}\binom{k}{2} \Delta^{2} y_{0}+\cdots+\binom{k}{n} \Delta^{n} y_{0}
$$

[8] Using least-square (discrete) method determine parameters $a_{0}$ and $a_{1}$ in approximate function $\Phi(x)=a_{0}+a_{1} x$ for the following set of data:

$$
\begin{array}{ccccc}
j & 0 & 1 & 2 & 3 \\
x_{j} & 0 & 1 & 2 & 4 \\
f\left(x_{j}\right) & 1 & 3 & 0 & -1
\end{array}
$$

Hint: Use the matrix equation

$$
\mathbf{X}^{\mathbf{T}} \cdot \mathbf{X} \cdot \overrightarrow{\mathbf{a}}=\mathbf{X}^{\mathbf{T}} \cdot \overrightarrow{\mathbf{f}}
$$

where, if we use the basic functions $\phi_{i}(x)=x^{i} \quad(i=0,1, \ldots, n)$,

$$
\mathbf{X}=\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n} \\
\vdots & & & & \\
1 & x_{m} & x_{m}^{2} & \ldots & x_{m}^{n}
\end{array}\right], \quad(m \geq n)
$$

[9] Proceed the discrete least squares approximation on the data set

$$
\begin{array}{ccccc}
x_{i} & 1.1 & 1.9 & 4.2 & 6.1 \\
f\left(x_{i}\right) & 2.5 & 3.2 & 4.5 & 6.0
\end{array}
$$

with function $\Phi_{0}(x)=a_{0}+a_{1} x$.
[10] Draw an algorithm for applying the Simpson's integration rule to compute

$$
\int_{0}^{\pi / 2} \sin x d x
$$

taking $h=\pi / 8$ and halving it up to $\pi / 2048$. Compare the results with exact one.
[11] Compute the integral of error-function

$$
H(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

for $x=0.5$ and $x=1$, using Taylor's series, with exactness $\varepsilon=10^{-3}$.
Hint: Use series

$$
e^{-t^{2}}=1-t^{2}+\frac{t^{4}}{2}-\frac{t^{6}}{6}+\frac{t^{8}}{24}-\frac{t^{10}}{120}+\cdots
$$

[12] Use Newton-Cotes' formula (trapezoidal) to compute the integral

$$
I=\int_{a}^{b} f(x) d x
$$

of function given in tabular form

$$
\begin{array}{ccccccc}
x & 1.0 & 1.2 & 1.4 & 1.6 & 1.8 & 2.0 \\
f(x) & 1.0000 & 0.8333 & 0.7143 & 0.6250 & 0.5556 & 0.5000
\end{array}
$$

with $a=1, b=2$. Compare the results with exact one, i.e.

$$
\int_{1}^{2} \frac{1}{x} d x=\left.\ln x\right|_{1} ^{2}=\ln 2=0.6931
$$

Draw the algorithm for computation of arbitrary integral by trapezoidal rule.

