
Faculty of Civil Engineering Faculty of Civil Engineering and Architecture
Belgrade Nǐs
Master Study Doctoral Study
COMPUTATIONAL ENGINEERING

LECTURES

LESSON IX

9. Numerical Differentiation and Integration

9.1 Numerical Differentiation

In this section the numerical differentiation of real functions defined on [a, b] will be
considered.

9.1.1. Introduction

The need for numerical differentiation appears in following cases:
a. When values of function are known only on discrete set of points on [a, b], i.e. function

f is given in tabular form;
b. When analytical expression for function f is rather complicated. Numerical differ-

entiation is chiefly based on approximation of function f by function Φ on [a, b], and
then differentiating Φ desirable times. Thus, based on f (k)(x) ∼ Φ(x) (a ≤ x ≤ b)), we
have

f (k)(x) ∼ Φ(x) (a ≤ x ≤ b; k = 1, 2, . . .).

For function Φ are mostly taken algebraic interpolation polynomials, because being
simple differentiating. Let Φ be interpolating polynomial of n−th degree, i.e.

Φ(x) = Pn(x).

If known error Rn(f ; x) of approximation polynomial

(9.1.1.1) f(x) = Pn(x) + Rn(f ; x) (a ≤ x ≤ b)

it is possible to estimate error in formula for differentiation, i.e. from (9.1.1.1) it
follows

f (k)(x) = P (k)
n (x) + R(k)

n (f ; x) (a ≤ x ≤ b)

It is meaningful to take for order of derivative only k < n.
It is obvious that numerical differentiation has smaller accuracy than interpolation.

So, for example, for interpolation is error in nodes equal to zero, what is not in case of
differentiation.

9.1.2. Formulas for numerical differentiation

If known values of function f on set of equidistant points {x0, x1, . . . , xm} ∈ [a, b], with
step h, let

fk = f(xk) = f(x0 + k · h) (k = 0, 1, . . . ,m).

149

150 Numerical Methods in Computational Engineering

Construct over set {xi, xi+1, . . . , xi+n} (0 ≤ i ≤ m−n) first Newton interpolation polynomial
(see Chapter 7, Finite Difference Calculus)
(9.1.2.1)

Pn(x) = fi + p ∆fi +
p (p− 1)

2!
∆2fi +

p (p− 1)(p− 2)
3!

∆3fi + . . . +
p (p− 1) . . . (p− n + 1)

n!
∆nfi,

where p = (x− xi)/h. Because P ′n(x) =
1
h

dPn(x)
dp

, by differentiation (9.1.2.1) we get

(9.1.2.2) P ′n(x) =
1
h

(

∆fi +
2p− 1

2
∆2fi +

3p2 − 6p + 2
6

∆3fi + . . .
)

.

By further differentiation of (9.1.2.2) we get, in turn P
′′

n , P
′′′

n , and so on. For example,

(9.1.2.3) P
′′

n (x) =
1
h2

(

∆2fi + (p− 1)∆3fi + . . .
)

.

For x = xi, i.e. p = 0, formulas (9.1.2.2) and (9.1.2.3) reduce to

P ′n(x) =
1
h

(

∆fi −
1
2
∆2fi +

1
3
∆3fi − . . . +

(−1)n−1

n
∆nfi

)

,

P
′′

n (x) =
1
h2

(

∆2fi −∆3fi +
11
12

∆4fi − . . .
)

.

Instead of first Newton interpolation polynomial one can use other interpolation poly-
nomials. For example, by differentiation Stirling polynomial

Pn(x) = fi +
(

p
1

)

δµfi +
p
2

(

p
1

)

δ2fi +
(

p + 1
3

)

δ3µfi +
p
4

(

p + 1
3

)

δ4fi + . . . ,

where x = xi + p · h, we get

P ′n(x) =
1
h

(

δµfi + p δ2fi +
3p2 − 1

6
δ3µfi +

2p3 − p
12

δ4fi + . . .
)

,

P
′′

n (x) =
1
h2

(

δ2fi + p δ3µfi +
6p2 − 1

12
δ4fi + . . .

)

,

P
′′′

n (x) =
1
h3

(

δ3µfi + p δ4fi + . . .
)

, etc.

In similar way, as for Newton’s formulas, for x = xi, i.e. p = 0, previous formulas
reduce to

P ′n(xi) =
1
h

(

δµfi −
1
6
δ3µfi + . . .

)

,

P
′′

n (xi) =
1
h2

(

δ2fi −
1
12

δ4fi + . . .
)

, etc.

Formulas for derivatives of function in interpolation nodes can also be obtained by formal
application of operational calculus. Using development of operator D, and starting from
definition ehD = E = 1 + ∆, i.e. Dk =

1
hk {log(1 + ∆)}k by means of Stirling numbers of first

kind, one gets k-th derivative in form (see [1], pp. 127-129)

f (k)(xi) = Dkfi =
1
hk (∆kfi −

k
2
∆k+1fi +

k(3k + 5)
24

∆k+2fi − . . .).

For k = 1 we have

(9.1.2.4) f ′(xi) =
1
h

(

∆fi −
1
2
∆2fi +

1
3
∆3fi − . . . +

(−1)n−1

n
∆nfi

)

+ R′n(f ; xi),

and error

(9.1.2.5) R′n(f ; xi) =
(−1)n

n + 1
hnf (n+1)(ξn) (xi < ξn < xn+i),

Lesson IX - Numerical Differentaiation and Integration 151

if f ∈ Cn+1[a, b]. By using backward operator ∇, in similar way like (9.1.2.4), we get

f ′(xi) =
1
h

(

∇fi −
1
2
∇2fi +

1
3
∇3fi + . . . +

1
n
∇nfi

)

+ R′n(f ; xi),

and residue
R′n(f ; xi) =

1
n + 1

hnf (n+1)(ηn) (xi−n < ηn < xi),

if f ∈ Cn+1[a, b]. The corresponding formulas for n = 1, 2, 3 are

f ′(xi) =
1
h

(fi − fi−1) +
h
2
f
′′
(η1),

f ′(xi) =
1
2h

(3fi − 4fi−1 + fi−2) +
h2

3
f
′′′

(η2),

f ′(xi) =
1
6h

(11fi − 18fi−1 + 9fi−2 − 2fi−3) +
h3

4
f IV (η3).

Previous formulas for first derivative in node xi are obviously asymmetric and are usually
applied on the interval [a, b] boundaries. Typical application of these formulas is at
approximation of differentiable boundary conditions in contour problems of differential
equations.

For nodes inside of segment [a, b] is better to use symmetric differentiation formulas
which are obtained by using operator of central difference (see [1], pp. 130-133). The
symmetric formulas are (note that f (k)(xi) = Dkfi)

(9.1.2.6) D =
1
h

(

δ − 12

223!
δ3 +

12 · 32

245!
δ5 − 12 · 32 · 52

267!
δ7 + . . .

)

,

which enables obtaining of Dfi only if we have values of function in the middle of
interpolation nodes, i.e. Dfi+1/2, because of δ2j+1fi = δ2j(fi+1/2 − fi−1/2). Formula which
uses only the function values in interpolation nodes is

(9.1.2.7) D =
µ
h

(

δ − 12

3!
δ3 +

12 · 22

5!
δ5 − 12 · 22 · 32

7!
δ7 + . . .

)

.

From last formula one can get a set of formulas, of which we will give two first:

Dfi =
1
h

µδfi + r1(f) =
1
2h

(fi+1 − fi−1) + r1(f),(10)

where
r1(f) = −1

6
h2f

′′′
(ξ1) (xi−1 < ξ1 < xi+1);

Dfi =
1
h

(µδfi −
1
6
µδ3fi) + r2(f) =

1
h

(−fi+2 + 8fi+1 − 8fi−1 + fi− 2) + r2(f),(20)

where
r2(f) =

1
30

h4fV (ξ1) (xi−2 < ξ2 < xi+2).

For obtaining higher derivatives are used formula (9.1.2.6) for derivatives of even
order and formula (9.1.2.7) for derivatives of odd order, what gives

D2 =
1
h2 (δ2 − 1

12
δ4 +

1
90

δ6 − 1
560

δ8 +
1

3150
δ10 − . . .),

D3 =
µ
h3 (δ3 − 1

4
δ5 +

7
120

δ7 − . . .),

D4 =
1
h4 (δ4 − 1

6
δ6 +

7
240

δ8 − . . .),

D5 =
µ
h5 (δ5 − 1

3
δ7 + . . .), etc.

152 Numerical Methods in Computational Engineering

The most used and simplest formula for approximation of second derivative is (taking
only the first member in expression for D2)

D2fi =
1
h2 δ2fi + r(f) =

1
h2 (fi+1 − 2fi + fi−1) + r(f).

where, under condition f ∈ C4[a, b], the residue is

r(f) = −h2

12
f IV (ξ).

Note that by using numerical integration the approximate formulas for differentia-
tion of analytical functions can be obtained.

9.2. Numerical integration - Quadrature formulas

9.2.1. Introduction

Numerical integration of functions is dealing with approximative calculation of defi-
nite integrals on the basis of the sets of values of function to be integrated, by following
some formula.

Formulas for calculation of single integrals are called quadrature formulas. In simi-
lar way, formulas for double integrals (and multi-dimensional integrals, too) are called
cubature formulas.

In our considerations, we will deal mainly with quadrature formulas.
The need for numerical integration appears in many cases. Namely, Newton-Leibnitz

formula (9.2.1.1)

∫ b

a
f(x)dx = f(b)− f(a),(9.2.1.1)

where F is primitive function of function f , cannot always be applied. Note some of
these cases:
1. Function F cannot be represented by finite number of elementary functions (for

example, when f(x) = e−x2).
2. Application of formula (9.2.1.1) leads often to very complicated expression, even at

calculation of integral of rather simple functions, e.g.
∫ b

a

dx
1 + x3 = log 3

√

|a + 1| − 1
6

log (a2 − a + 1) +
1√
3
arctg

a
√

3
2− a

.

3. Integration of functions with values known on discrete set of points (obtained, for
example, by experiments), is not possible by applying formula (9.2.1.1).
Large number of quadrature formulas are of form

∫ b

a
f(x)dx ∼=

n
∑

k=0

Akfk,(9.2.1.2)

where fk = f(xk) (a ≤ x0 < . . . < xn ≤ b). If x0 = a and xn = b, formula (9.1.1.2) is of closed
kind, and in other cases is of open kind.

For integration of differentiable functions are used also formulas which have, in
addition to function values, values of its derivatives. The formulas for calculation of
integrals of form

∫ b

a
p(x)f(x)dx,

Lesson IX - Numerical Differentaiation and Integration 153

where x → p(x) is given weight function, are also of concern.
One simple way for construction of quadrature formulas is founded on application

of interpolation. Formulas obtained in this way are called interpolating quadrature
formulas.

Let the values of function f in given points
x0, x1, . . . , xn(∈ [a, b]) be f0, f1, . . . , fn respectively, i.e.

fk ≡ f(xk) (k = 0, 1, . . . , n).

On the basis of these data, we can construct Lagrange interpolation polynomial

Pn(x) =
n

∑

k=0

fk
ω(x)

(x− xk)ω′(xk)
,

where ω(x) = (x− x0)(x− x1) · · · (x− xn).
Then

∫ b

a
p(x)f(x)dx =

∫ b

a
p(x)Pn(x)d x + Rn+1(f),

i.e.
∫ b

a
p(x)f(x)dx =

n
∑

k=0

Akfk + Rn+1(f),(9.2.1.3)

where we put

Ak =
∫ b

a

p(x)ω(x)
(x− xk)ω′(xk)

dx (k = 0, 1, . . . , n).

In formula (9.2.1.3), Rn+1(f) is called residue (rest, residuum) of quadrature formula
and represents error done by replacing of integral by finite sum. Index n + 1 in residue
denotes that integral is approximate calculated based on values of function to be inte-
grated in n + 1 points.

Denote with πn set of all polynomials of degree not greater than n.
Because f(x) = xk (k = 0, 1, . . . , n), f(x) ≡ Pn(x), we have Rn+1(xk) ≡ 0 (k = 0, 1, . . . , n),

wherefrom we conclude that formula (9.2.1.3) is exact for every f ∈ πn, regardless of choice
of interpolation nodes xk (k = 0, 1, . . . , n) and in this case we say that (9.2.1.3) has algebraic
degree of accuracy n.

9.2.2. Newton-Cotes formulas

In this section we will develop quadrature formulas od closed type in which the
interpolation nodes xk = x0 + kh (k = 0, 1, . . . , n) are taken equidistantly with a step h =
b− a

n
.

If we introduce substitution x− x0 = ph, we have

(9.2.2.1) ω(x) = (x− x0)(x− x1) . . . (x− xn) = hn+1p(p− 1) . . . (p− n)

and

(9.2.2.2)
ω′(xk) = (xk − x0)(xk − x1) . . . (xk − xk−1)(xk − xk+1) . . . (x− xn)

= hn(−1)n−kk!1(n− k)!

By introducing notation for generalized degree x(s) = x(x − 1) . . . (x − s + 1), based on
(9.2.2.1), (9.2.2.2) and results from previous section, we get

Ak =

n
∫

0

(−1)n−kp(n+1)h
(p− k)k!(n− k)!

dp (k = 0, 1, . . . , n),

154 Numerical Methods in Computational Engineering

i.e.
Ak = (b− a)Hk (k = 0, 1, . . . , n),

where we put

Hk ≡ Hk(n) =
(−1)n−k

n!n

(

n
k

) ∫ n

0

p(n+1)

p− k
dp (k = 0, 1, . . . , n).(9.2.2.3)

Coefficients Hk are known in literature as Newton-Cotes coefficients, and corresponding
formulas

xn=b
∫

x0=a

f(x)dx = (b− a)
n

∑

k=0

Hkf(a + k
b− a

n
) (k ∈ N)(9.2.2.4)

as Newton-Cotes formulas.
Further on we will give survey of Newton-Cotes formulas for n ≤ 8. Here we use

denotations h =
b− a

n
, fk = f(xk) (k = 0, 1, . . . , n).

1. n = 1 (Trapezoid rule)

x1
∫

x0

f(x)dx =
h
2
(f0 + f1)−

h3

12
f ′′(ξ1);

2. n = 2 (Simpson’s rule)

x2
∫

x0

f(x)dx =
h
3
(f0 + 4f1 + f2)−

h5

90
f IV (ξ2);

3. n = 3 (Simpson’s rule 3
8)

x3
∫

x0

f(x)dx =
3h
8

(f0 + 3f1 + 3f2 + f3)−
3h5

80
f IV (ξ3);

4. n = 4 (Boole’s rule)

x4
∫

x0

f(x)dx =
2h
45

(7f0 + 32f1 + 12f2 + 32f3 + 7f4)−
8h7

945
fV I(ξ4);

5. n = 5
x5
∫

x0

f(x)dx =
5h
288

(19f0 + 75f1 + 50f2 + 50f3 + 75f4 + 19f5)−
275h7

12096
f (6)(ξ5);

6. n = 6
x6
∫

x0

f(x)dx =
h

140
(41f0 + 216f1 + 27f2 + 272f3 + 27f4

+ 216f5 + 41f6)−
9h9

1400
f8(ξ6);

7. n = 7
x7
∫

x0

f(x)dx =
7h

17280
(751f0 + 3577f1 + 1323f2 + 2989f3 + 2989f4

+ 1323f5 + 3577f6 + 751f7)−
8183h9

518400
f (8)(ξ7);

Lesson IX - Numerical Differentaiation and Integration 155

8. n = 8
x8
∫

x0

f(x)dx =
4h

14175
(989f0 + 5888f1 − 928f2 + 10496f3 − 4540f4

+ 10496f5 − 928f6 + 5888f7 + 989f8)−
2368h11

467775
f (10)(ξ8);

where ξk ∈ (x0, xk) (k = 1, . . . , 8).
In general case, the residue Rn+1(f) is of form

Rn+1(f) = Cnhmf (m−1)(ξn) (x0 < ξn < xn),

where m = 2[n
2] + 3. Given equality has a meaning if function f ∈ Cm−1[a, b].

9.2.3. Generalized quadrature formulas

In order to compute value of integrals more accurate it is necessary to divide segment
[a, b] to the set of subsegments, and then to apply to each of them some quadrature
formula. In this way we get generalized or composite formulas. In this section we will
consider generalized formulas obtained on the basis of trapezoid or Simpson’s formula.

Divide the segment [a, b] on set of subsegments [xi−1, xi] so that xi = a + ih and h =
(b− a)/n.

Figure 9.2.3.1

By applying the trapezoid formula on every subsegment, we get

b
∫

a

f(x)dx =
n

∑

i=1

xi
∫

xi−1

f(x)dx =
n

∑

i=1

(
h
2
(fi−1 + fi)−

h3

12
f ′′(ξi)),

i.e.
b

∫

a

f(x)dx = Tn −
h3

12

n
∑

i=1

f ′′(ξi),

where
Tn ≡ Tn(f ; h) = h(

1
2
f0 + f1 + · · ·+ fn−1 +

1
2
fn)

and
xi−1 < ξi < xi (i = 1, 2, . . . , n).

Theorem 9.2.3.1. If f ∈ C2[a, b] the equality

b
∫

a

f(x)dx− Tn = − (b− a)2

12n2 f ′′(ξ) (a < ξ < b)

156 Numerical Methods in Computational Engineering

holds.

Quadrature formula
b

∫

a

f(x)dx ∼= Tn(f ; h) (h =
b− a

n
)

is called generalized trapezoid formula.
Suppose now that h =

b− a
2n

, i.e. xi = a + ih (i = 0, 1, . . . , 2n) (See Fig. 9.2.3.2), and
then apply Simpson’s rule to subsegments

[x0, x2], . . . , [x2n−2, x2n].

In this way we get generalized Simpson’s formula

b
∫

a

f(x)dx ∼= Sn(f ;h) (h =
b− a
2n

),

where
Sn ≡ Sn(f, h) =

h
3
{f0 + 4(f1 + . . . + f2n−1) + 2(f2 + . . . + f2n−2) + f2n}.

Figure 9.2.3.2

Theorem 9.2.3.2. If f ∈ C4[a, b] the equality

b
∫

a

f(x)dx− Sn = − (b− a)2

2880n4 f (IV)(ξ) (a < ξ < b)

holds.

9.2.4. Romberg integration

For calculation of definite integrals in practice is most frequently used generalized
trapezoid formula in a special form, known as Romberg integration.

Denote with T (0)
k trapezoid approximation Tn(f ; h) (n = 2k), i.e. h =

(b− a)
2k). Romberg

integration consists of construction of two-dimensional set T (m)
k (m = 0, 1, . . . , k; k = 0, 1, . . .)

using

T (m)
k =

4mT (m−1)
k+1 − T (m−1)

k

4m − 1
.(9.2.4.1)

Using (9.2.4.1) one can construct so known T table

Lesson IX - Numerical Differentaiation and Integration 157

T (0)
0 −→ T (1)

0 −→ T (2)
0 −→ T (3)

0

↗ ↗ ↗
...

T (0)
1 −→ T (1)

1 −→ T (2)
1 −→

↗ ↗
...

T (0)
2 −→ T (1)

2 −→

↗
...

T (0)
3 −→

by taking k = 0, 1, . . . and m = 1, 2, In first column of this table are in turn approximate
values of integral I obtained by means of trapezoid formula with hk = (b − a)/2k (k =
0, 1, . . .). Second column is obtained based on the first, using formula (9.2.4.1), third from
second, and so on.

Iterative process, defined by (9.2.4.1) is the standard Romberg method for numerical
integration. One can prove that series {T (m)

k }k∈N0 and {T (m)
k }m∈N0 (by columns and rows

in T -table) converge to I. At practical application of Romberg integration, iterative
process (9.2.4.1) is usually interrupted when |T (m)

0 − T (m−1)
0 | ≤ ε, where ε is in advance

allowed error, and then as result is taken I ∼= T (m)
0 .

9.2.5. Program realization

In this section we give program realization of Simpson’s and Romberg integration.

Program 9.2.5.1.

For integration using generalized Simpson’s formula the subroutine INTEG is written.
Parameters in parameter list are of meaning explained in C- comments of subprogram
source code. Function to be integrated is given in subroutine FUN, and depends on one
parameter Z. By integer parameter J is provided simultaneous specifying more functions
to integrate.

Subroutine INTEG is organized in this way that initial number of subsegments can
be improved (by reduction of step h to h/2) up to MAX=1000. In case when relative dif-
ference in integrals values, obtained by steps h and h/2, is less than 10−5, the calculation
interrupts and value of integral calculated with the smallest step is taken as definitive
value of integral. If this criterion cannot be fulfilled with less than MAX subsegments,
the message KBR=1 is printed (and in opposite case KBR=0).

As a test examples for this subroutine, the following integrals are taken:

1
∫

0

ez x

x2 + z2 dx (z = 1.0(0.1)1.5),

1/2
∫

0

π sin(πzx) dx (z = 1.0(0.2)1.4)

2
∫

1

log(x + z)
z2 + ex

sin x
x

dx (z = 0.0(0.1)0.5)

.

Subroutines, main program, and output listing are of form:
C==
C IZRACUNAVANJE ODREDENOG INTEGRALA FUNKCIJE F(X,Z,J)
C SIMPSONOVOM FORMULOM
C==

158 Numerical Methods in Computational Engineering

SUBROUTINE INTEG(A, B, S, F, J, KBR, Z)
C A - LOWER LIMIT OF INTEGRAL
C B - UPPER LIMIT OF INTEGRAL
C S - VALUE OF INTEGRAL WITH ACCURACY EPS=1.E-5
C KBR - CONTROL NUMBER
C KBR=0 INTEGRAL CORRECTLY COMPUTED
C KBR=1 INTEGRAL NOT COMPUTED WITH SPECIFIED ACCURACY
C Z - PARAMETAR OF INTEGRATED FUNCTION
C INITIAL NUMBER OF SEGMENTS IS 2*MP MAXIMAL IS MAX=1000

MP=15
MAX=1000
KBR=0
N=2.*MP
S0=0.
SAB=F(A,Z,J)+F(B,Z,J)
H=(B-A)/FLOAT(N)
X=A
S1=0.
N2=N-2
DO 5 I=2, N2, 2
X=X+2.*H

5 S1=S1+F(X,Z,J)
10 S2=0.

X=A-H
N1=N-1
DO 15 I=1, N1, 2
X=X+2.*H

15 S2=S2+F(X,Z,J)
S=H/3.*(SAB+2.*S1+4.*S2)
REL=(S-S0)/S
IF (ABS(REL)-1.E-5) 35,35,20

20 IF (N-MAX) 25,25,30
25 N=2*N

H=0.5*H
C BROJ PODEOKA SE UVECAVA DVA PUTA I
C IZRACUNAVA SE NOVA VREDNOST ZA S1

S1=S1+S2
S0=S
GO TO 10

30 KBR=1
35 RETURN

END
FUNCTION FUN(X,Z,J)
GO TO (10,20,30),J

10 FUN=EXP(Z*X)/(X*X+Z*Z)
RETURN

20 PI=3.1415926535
FUN=PI*SIN(PI*X*Z)
RETURN

30 FUN=ALOG(X+Z)/(Z*Z+EXP(X))*SIN (X)/X
RETURN
END
EXTERNAL FUN
OPEN(8,File=’Simpson.IN’)
OPEN(6,File=’Simpson.out’)
WRITE(6,5)

5 FORMAT (1H1,2X, ’IZRACUNAVANJE VREDNOSTI INTEGRALA’,
1 ’ PRIMENOM SIMPSONOVE FORMULE ’ //14X,
2 ’TACNOST IZRACUNAVANJA EPS=1.E-5’
3 ///11X,’J’,4X,’DONJA’,5X,’GORNJA’,3X,’PARAMETAR’,
4 3X,’ VREDNOST’/ 16X, ’GRANICA’, 3X,’GRANICA’,
5 5X,’Z’,7X,’INTEGRALA’//)

DO 40 J=1,3
READ (8,15) DG, GG, ZP, DZ, ZK

15 FORMAT(5F5.1)
Z=ZP-DZ

18 Z=Z+DZ
IF (Z.GT.ZK+0.000001) GO TO 40
CALL INTEG (DG,GG,S,FUN,J,KBR,Z)
IF(KBR) 20,25,20

Lesson IX - Numerical Differentaiation and Integration 159

20 WRITE (6,30)
30 FORMAT (/11X, ’INTEGRAL NIJE KOREKTNO IZRACUNAT’/)

GO TO 18
25 WRITE (6,35) J,DG,GG,Z,S
35 FORMAT (11X,I1,F8.1,2F10.1,F15.6/)

GO TO 18
40 CONTINUE

STOP
END

0.,1.,1.,0.1,1.5
0.,0.5,1.,0.2,1.4
1.,2.,0.,0.1,0.5

1 IZRACUNAVANJE VREDNOSTI INTEGRALA PRIMENOM SIMPSONOVE FORMULE
TACNOST IZRACUNAVANJA EPS=1.E-5

J DONJA GORNJA PARAMETAR VREDNOST
GRANICA GRANICA Z INTEGRALA

1 .0 1.0 1.0 1.270724
1 .0 1.0 1.1 1.153890
1 .0 1.0 1.2 1.059770
1 .0 1.0 1.3 .983069
1 .0 1.0 1.4 .920013
1 .0 1.0 1.5 .867848
2 .0 .5 1.0 1.000000
2 .0 .5 1.2 1.090848
2 .0 .5 1.4 1.134133
3 1.0 2.0 .0 .048047
3 1.0 2.0 .1 .059595
3 1.0 2.0 .2 .069940
3 1.0 2.0 .3 .079052
3 1.0 2.0 .4 .086920
3 1.0 2.0 .5 .093558

Program 9.2.5.2.

Now we give program realization of Romberg integration in double arithmetic com-
puter precision DOUBLE PRECISION. List in subroutine is of following meaning:

DG - lower limit of integral;
GG - upper limit of integral;
FUN - name of function subroutine which defines function to be integrated ;
EPS - demanded accuracy of computation;
VINT - value of integral for given accuracy EPS, if KB=0;
KB - control number (KB=0 - integral correctly computed; KB=1 - accuracy of com-

puting not reached after 15 proposed steps, i.e. with numbers of subsegments 215). For
testing of this subroutine is taken tabulating of function

F (x) =

x
∫

0

e−t2dt (x = 0.1(0.1)1.0),

with accuracy 10−5. Routines codes and output listings are of form:
C===
C ROMBERGOVA INTEGRACIJA
C===

DOUBLE PRECISION GG, FUN, VINT
EXTERNAL FUN
open(6,file=’romberg.out’)

EPS=1.E-8
WRITE (6,11)

11 FORMAT(1H0,5X,’X’,7X,’INTEGRAL(0.,X)’/)
DO 10 I=1, 10
GG=0.1*I
CALL ROMBI(0.D0,GG,FUN,EPS,VINT,KB)

160 Numerical Methods in Computational Engineering

IF (KB) 5,15,5
5 WRITE (6,20) GG

20 FORMAT (5X,F3.1,4X,’TACNOST NE ZADOVOLJAVA’//)
GO TO 10

15 WRITE(6,25)GG,VINT
25 FORMAT(5X,F3.1,4X,F14.9)
10 CONTINUE

STOP
END
SUBROUTINE ROMBI (DG,GG,FUN,EPS,VINT,KB)
DOUBLE PRECISION FUN,VINT,T(15),DG,GG,H,A,POM,B,X
KB=0
H=GG-DG
A=(FUN(DG)+FUN(GG))/2.
POM=H*A
DO 50 K=1, 15
X=DG+H/2.

10 A=A+FUN (X)
X=X+H
IF (X.LT.GG) GO TO 10
T(K)=H/2.*A
B=1.
IF (K.EQ.1) GO TO 20
K1=K-1
DO 15 M=1, K1
I=K-M
B=4.*B

15 T(I)=(B*T(I+1)-T(I))/(B-1.)
20 B=4.*B

VINT=(B*T(1)-POM)/(B-1.)
IF(DABS(VINT-POM).LE.EPS) RETURN
POM=VINT

50 H=H/2.
KB=1
RETURN
END
FUNCTION FUN(X)
DOUBLE PRECISION FUN,X
FUN=DEXP(-X*X)
RETURN
END

0 X INTEGRAL(0.,X)
.1 .099667666
.2 .197365034
.3 .291237887
.4 .379652845
.5 .461281012
.6 .535153533
.7 .600685674
.8 .657669863
.9 .706241521

1.0 .746824138

9.2.6. On numerical computation of one class of double integrals

In this section we will point out to one way for approximate calculation of double
integrals of form

∫∫

G

f(x, y) dxdy,(9.2.6.1)

where area of integration is unit circle, i.e. G = {(x, y) |x2 +y2 ≤ 1}. Namely, for numerical
computation of the integral (9.2.6.1) in literature is known formula

∫∫

G

f(x, y) dxdy ∼=
π
8

(2f(0) +
n

∑

i=1

f(Mi)),(9.2.6.2)

Lesson IX - Numerical Differentaiation and Integration 161

where O is origin, i.e. 0 = (0, 0), and points Mi have polar coordinates

ri =

√

2
3
, Φi =

π
3

(i− 1) (i = 1, 2, . . . , 6).

.
According to formula (9.2.6.2) we will realise program for computation of double

integrals, with unit circle as area of integration. Program organization will be such that
by function subroutine EF can be defined several different functions to be integrated f .
Parameters in list of parameters are of following meaning:

X - value of argument x;
Y - value of argument y;
K - integer that defines different functions to be integrated.
Formula (9.2.6.2) is realized by subroutine DVINT, which parameters in list are of

following meaning:
EF - name of function subroutine;
K - integer with same meaning like in subroutine EF;
VRINT - computed value of integral, obtained by using formula (9.2.6.2).

SUBROUTINE DVINT(EF, K,VRINT)
PI=3.1415926535
RO=SQRT(2./3)
PI3=PI/3
FI=-PI3
VRINT=2.*EF(0.,0.,K)
DO 10 I=1,6
FI=FI+PI3
X=RO*COS(FI)
Y=RO*SIN(FI)

10 VRINT=VRINT+EF(X,Y,K)
VRINT=PI/8.*VRINT
RETURN
END

Main program is of form:
C==
C IZRACUNAVANJE DVOSTRUKOG INTEGRALA
C==

EXTERNAL EF
OPEN(6,FILE=’DVINT.OUT’)
WRITE (6,5)

5 FORMAT (1H1//10X,’IZRACUNAVANJE DVOSTRUKOG’,
1’ INTEGRALA’//)
DO 10 K=1,3
CALL DVINT(EF, K, VRINT)

10 WRITE (6,15)K,VRINT
15 FORMAT (15X,I1,’ PRIMER’// 10X,

1 ’VREDNOST INTEGRALA =’,F12.6//)
STOP
END

By using this program we calculated approximately values of the following integrals:

10
∫∫

G

16x2y2

1 + x2 + y2 dxdy;

20
∫∫

G

√

1 + (1 + x)2 + y2 dxdy;

30
∫∫

G

24x2
√

2− x2 − y2
dxdy.

Function subroutine EF and output listing are of form:

162 Numerical Methods in Computational Engineering

FUNCTION EF(X,Y,K)
GO TO (10,20,30),K
10 EF=(16.*X*X*Y*Y)/(1.+X*X+Y*Y)

RETURN
20 EF=SQRT(1.+Y*Y+(1.+X)**2)

RETURN
30 EF=(24.*X*X)/SQRT(2.-X*X-Y*Y)

RETURN
END

1
IZRACUNAVANJE DVOSTRUKOG INTEGRALA

1 PRIMER
VREDNOST INTEGRALA = 1.256637

2 PRIMER
VREDNOST INTEGRALA = 4.858376

3 PRIMER
VREDNOST INTEGRALA = 16.324200

9.2.7. Packages for Numerical Integration

Numerical integration of both discrete data and known functions are needed in en-
gineering practice. The procedures for first case are based on fitting approximating
polynomials to the data and integrating the approximating polynomials. The direct
fit polynomial method works well for both equally spaced data and non-equally spaced
data. Least squares fit polynomials can be used for large sets of data or sets of rough
data. The Newton-Cotes formulas, which are based on Newton forward-difference poly-
nomials, give simple integration formulas for equally spaced data. Romberg integration,
which is extrapolation of the trapezoid rule is of important practical use. An example
of multiple integration is presented as illustrative case.

Of presented simple methods it is likely that Romberg integration is most efficient.
Simpson’s rules are elegant, but the first extrapolation of Romberg integration gives
comparable results. Subsequent extrapolation of Romberg integration increase the order
at a very satisfactory rate. Simpson’s rules could be developed into an extrapolation
procedure, but with no advantage over Romberg integration.

Many commercial software packages contain solvers for numerical integration. Some
of the more prominent systems are Matlab and Mathcad. More sophisticated systems,
such as Mathematica, Macsyma (VAX UNIX MACSYMA, Reference Manual, Symbolics
Inc., Cambridge, MA), and Maple (MAPLE V Library Reference Manual, Springer, NY,
1991) also contain numerical integration solvers.

Some organizations have own packages - collection of high-quality routines, like
ACM (Collected algorithms), IMSL (Houston, TX), NAG (Numerical Algorithms Group,
Downers Grove, IL), and some famous individual packages are QUADPACK (R. Piessens, et
all.), QUADPACK, A Subroutine Package for Automatic Integration, Springer, Berlin,
1983), CUBTRI (Cubature Formulae Over Triangle), SSP (IBM Numerical Software).

The book Numerical Recipes ([4], Chap. 4) contains several subroutines for inte-
gration of functions. Some algorithms, from which some are codded, are given in book
Numerical Methods for Engineers and Scientists ([3], Chap. 6).

On the end, in order to give some hints for software own development or usage of
software packages, we will give standard test examples for testing or benchmarking.

Standard test examples (Indefinite integrals):

10
∫

sin x dx; 20
∫ √

tan x dx; 30
∫

x
x3 − 1

dx; 40
∫

x
sin2 x

dx; 50
∫

log x√
x + 1

dx;

60
∫

x√
1 + x +

√
1− x

dx; 70
∫

e−ax2
dx; 80

∫

x
log3 x

dx; 90
∫

sin x
x2 dx; 100

∫

1
2 + cos x

dx;

Lesson IX - Numerical Differentaiation and Integration 163

Standard test examples (Definite integrals):

10
∫ 4π

0

1
2 + cos x

dx; 20
∫ ∞

−∞

sin x
x

dx; 30
∫ ∞

0

e−x
√

x
dx; 40

∫ ∞

0

x2e−x

1− e−2x dx; 50
∫ ∞

0
e−x2

log2 x dx;

60
∫ ∞

1
e−xx3 log2 x dx; 70

∫ ∞

0

x2

1 + x3 dx; 80
∫ 1

−1

1
x2 dx; 90

∫ ∞

1
e−xx11/3 dx;

Bibliography (Cited references and further reading)

[1] Milovanović, G.V., Numerical Analysis II, Naučna knjiga, Beograd, 1988 (Serbian).
[2] Milovanović, G.V. and Djordjević, Dj.R., Programiranje numeričkih metoda na

FORTRAN jeziku. Institut za dokumentaciju zaštite na radu ”Edvard Kardelj”,
Nǐs, 1981 (Serbian).

[3] Hoffman, J.D., Numerical Methods for Engineers and Scientists. Taylor & Francis,
Boca Raton-London-New York-Singapore, 2001.

[4] Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical Re-
cepies - The Art of Scientific Computing. Cambridge University Press, 1989.

[5] Kronrod, A. S., Nodes and Weights of Quadrature Formulas. Consultants Bureau,
New York, 1965.

[6] Clenshaw, C.W. and Curtis, A.R., A method for numerical integration on an auto-
matic computer Num. Math. 2(1960), pp. 197–205.

[7] Engels, H., Numerical Quadrature and Cubature. Academic Press, London, 1980.
[8] Abramowitz, M., On the practical evaluation of integrals. SIAM J. Appl. Math.

2(1954)20-35.
[9] Davis, P.J., and P. Rabinowitz, P., Methods of Numerical Integration. Academic

Press, New York, 1975.
[10] Krylov, V.I., Approximate Calculation of Integrals. MacMillan, New York, 1962

(Russian, transl. A.H. Stroud).
[11] Stroud, A.H., Approximative Calculation of Multiple Integrals. Prentice-Hall, En-

glewood Cliffs, N.J. 1971.
[12] Mysovskih, I.P., Interpolyacionnye Kubaturnye Formuly. Nauka, Moskva, 1981.
[13] Stroud, A.H., Gaussian Quadrature Formulas. Prentice Hall, Englewood Cliffs, N.J.,

1966.
[14] Ralston,A., A First Course in Numerical Analysis.

McGraw-Hill, New York, 1965.
[15] Hildebrand, F.B., Introduction to Numerical Analysis.

Mc.Graw-Hill, New York, 1974.
[16] Acton, F.S., Numerical Methods That Work (corrected edition). Mathematical As-

sociation of America, Washington, D.C., 1990.
[17] Abramowitz, M., and Stegun, I.A., Handbook of Mathematical Functions. National

Bureau of Standards, Applied Mathematics Series, Washington, 1964 (reprinted
1968 by Dover Publications, New York).

[18] Rice, J.R., Numerical Methods, Software, and Analysis. McGraw-Hill, New York,
1983.

[19] Forsythe, G.E., Malcolm, M.A., and Moler, C.B., Computer Methods for Mathemat-
ical Computations. Englewood Cliffs, Prentice-Hall, NJ, 1977.

[20] Kahaner, D., Moler, C., and Nash, S., 1989, Numerical Methods and Software. En-
glewood Cliffs, Prentice Hall, NJ, 1989.

[21] Hamming, R.W., Numerical Methods for Engineers and Scientists. Dover, New York,
1962 (reprinted 1986).

[22] Ferziger, J.H., Numerical Methods for Engineering Applications. Stanford Univer-
sity, John Willey & Sons, Inc., New York, 1998.

164 Numerical Methods in Computational Engineering

[23] Pearson, C.E., Numerical Methods in Engineering and Science. University of Wash-
ington, Van Nostrand Reinhold Company, New York, 1986.

[24] Stephenson, G. and Radmore, P.M., Advanced Mathematical Methods for Engineer-
ing and Science Students. Imperial College London, University College, London
Cambridge Univ. Press, 1999.

[25] Milovanović, G.V. and Kovačević, M.A., Zbirka rešenih zadataka iz numeričke anal-
ize. Naučna knjiga, Beograd, 1985. (Serbian).

[26] IMSL Math/Library Users Manual , IMSL Inc., 2500 City West Boulevard, Houston
TX 77042.

[27] NAG Fortran Library, Numerical Algorithms Group, 256 Banbury Road, Oxford
OX27DE, U.K.

[28] Piessens, R., de Doncker-Kapenga, E., Überhuber, C.W., Kahaner, D.K., QUAD-
PACK, A Subroutine Package for Automatic Integration. Springer-Verlag, Berlin,
1983.

[29] Laurie, D. P., Algorithm 584 CUBTRI: Automatic cubature over a triangle. ACM
Trans. Math. Software 8(1982), 210.–218.

[30] Stoer, J., and Bulirsch, R., Introduction to Numerical Analysis. Springer-Verlag,
New York, 1980.

[31] Johnson, L.W., and Riess, R.D., Numerical Analysis, 2nd ed. Addison- Wesley,
Reading, MA, 1982.

[32] Ralston, A., and Rabinowitz, P., A First Course in Numerical Analysis, 2nd ed.
McGraw-Hill, New York, 1978.

[33] Isaacson, E., and Keller, H.B., Analysis of Numerical Methods. Wiley, New York,
1966.

