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LECTURES

LESSON VIII

8. Approximations of Functions

8.1. Introduction

This chapter is devoted to approximations of functions most applied in different
areas of sciences and engineering.

Let function f : [a, b] → R given by set of value pairs (xj , fj) (j = 0, 1, . . . ,m) where
fj ≡ f(xj). Consider the problem of approximation of function f by linear approximation
function

Φ(x) ≡ Φ(x; a0, . . . , an) =
n

∑

i=0

aiφi(x),

where m > n (for m = n we have interpolation). Proceeding like at interpolation, we get
so known overdefined system of equations

(8.1.1)
n

∑

i=0

aiφi(xj) = fj (j = 0, 1, . . . ,m),

which in general case does not have solution, i.e. all equations of system (8.1.1) can not
be contemporary satisfied. If we define δn by

(8.1.2) δn(x) = f(x)−
n

∑

i=0

aiφi(x),

it is possible to search for ”solution” of system (8.1.1) so that

(8.1.3) ||δ∗n|| = min
ai
||δn||r,

where
||δn||r = (

m
∑

j=0

|δn(xj)|r)1/r (r ≥ 1).

The equality (8.1.3) gives the criteria for determination of parameters a0, a1, . . . , an in
approximation function Φ. The quantity ||δ∗n||r, which exists always, is called the value
of best approximation in lr. Optimal values of parameters ai = ai (i = 0, 1, . . . , n) in sense
of (8.1.3) give the best lr approximation function

Φ(x)∗ =
n

∑

i=0

aiφi(x).

Most frequently is taken
1. r = 1, ||δn||1 =

m
∑

j=0
|δn(xj)| (best lr approximation),
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2. r = 2, ||δn||2 = (
m
∑

j=0
|δn(xj)2)1/2| (mean-square approximation),

3. r = +∞, ||δn||∞ = max0≤j≤m |δn(xj)| (Tchebyshev min-max approximation). In a
similar way can be considered problem of best approximation of function f in space
Lr(a, b). Here we have

||δn||r =
(

b
∫

a

|δn(x)|r dx
)1/r

(1 ≤ r < +∞)

and
||δn||∞ = max

a≤x≤b
|δn(x)|.

By introducing weight function p : (a, b) → R+ the more general case of mean-square
approximations can be considered, where the corresponding norms for discrete and
continuous case are given as (see [1], pp. 90-91)

||δn||2 = ||δn||2,p =
(

m
∑

j=0

p(xj)δn(xj)|2
)1/2

(8.1.4)

and

||δn||2 = ||δn||2,p =
(

b
∫

a

p(x)δn(x)2 dx
)1/2

,(8.1.5)

respectively.

Example 8.1.1. Function x → f(x) = x1/3 is to approximate with function x → φ(x) = a0 + a1x in
space

10 L1(0, 1), 20 L2(0, 1), 30 L∞(0, 1).

Here we have δ1(x) = x1/3 − a0 − a1x (0 ≤ x ≤ 1). (see [1], pp. 91-93).

10 We get the best L1(0, 1) approximation by minimization of norm

||δ1||1 =

1
∫

0

|x1/3 − a0 − a1x|dx.

Having ∂δ1

δa0
= −1, and ∂δ1

δa1
= −x, the optimal values of parameters a0 and a1 are to be

determined from the system of equations

(8.1.6)

1
∫

0

sgnδ1(x) dx = 0,

1
∫

0

x sgnδ1(x) dx = 0.

Having in mind that δ1 changes sign on segment [0, 1] in points x1 and x2 (see fig.
8.1.1), system of equations 8.1.6 reduces to system

x2 − x1 =
1
2
, x2

2 − x2
1 =

1
2
,

wherefrom it follows x1 = 1
4 and x2 = 3

4 .
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Thus, determining the best L1(0, 1) approximation reduces to interpolation, i.e. de-
termining of interpolation polynomial Φ∗ which satisfies the conditions

Φ∗(1/4) = f(1/4) = 3

√

1
4
, Φ∗(3/4) = f(3/4) = 3

√

3
4
,

i.e.
Φ∗(x) =

2
3 3
√

4
( 3
√

3− 1)x +
1

2 3
√

4
(3− 3

√
3)

∼= 0.55720x + 0.49066.

Fig. 8.1.1 Fig. 8.1.2
20 Let

I(a0, a1) = ||δ1||22 =

1
∫

0

(x1/3 − a0 − a1x)2dx.

From the conditions
∂I
∂a0

= −2

1
∫

0

(x1/3 − a0 − a1x)dx = 0,

∂I
∂a1

= −2

1
∫

0

x(x1/3 − a0 − a1x)dx = 0,

it follows
a0 +

1
2
a1 =

3
4
,

1
2
a0 +

1
3
a1 =

3
7
,

i.e. a0 = a0 = 3
7 , a1 = a1 = 9

14 , so that the best mean-square approximation is given
with

Φ∗(x) =
3
7

+
9
14

x ∼= 0.42857x + 0.64286x.

30 For determining of min-max approximation we will use the following simple geo-
metrical procedure. Through the end-points of curve y = f(x) = x1/3 (0 ≥ x ≥ 1) we
will draw the secant, and then tangent on the curve which is parallel to this secant
(see Fig. 8.1.2). The corresponding equations for those straight lines are

y = ysec = x and y = ytan = x +
2
√

3
9

,

so that the best min-max approximation is

Φ∗(x) =
1
2
(ysec + ytan) = x +

√
3

9
∼= x + 0.19245,
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whereby the the value of best approximation is ||δ∗1 ||∞ =
√

3
9 .

8.2. Mean-square approximation

Here, we will consider the problem of best approximation of function f : [a, b] → R
using linear approximation function

Φ(x) =
n

∑

i=0

aiΦi(x),

where {Φi} is system of linear independent functions from the space L2(a, b), with scalar
product introduced by

(f, g) =

b
∫

a

p(x)f(x)g(x)dx (f, g ∈ L2(a, b)),

where p : (a, b) → R+ is given weight function.
From the previous section we can conclude that for the best mean-square approxi-

mation for f it is necessary to minimize the norm (8.1.5) by parameters ai (i = 0, 1, . . . , n).
If we put I(a0, a1, . . . , an) = ||δn||2 = (δn, δn), then from

∂I
∂aj

= 2

b
∫

a

p(x)(f(x)−
n

∑

i=0

aiΦi(x))(−Φj(x))dx = 0 (j = 0, 1, . . . , n)

it follows system of equations for determination of approximation parameters

(8.2.1)
n

∑

i=0

(Φi, Φj)ai = (f, Φj) (j = 0, 1, . . . , n).

This system can be represented in matrix form as








(Φ0, Φ0) (Φ1, Φ0) . . . (Φn, Φ0)
(Φ0, Φ1) (Φ1, Φ1) (Φn, Φ1)

...
(Φ0, Φn) (Φ1, Φn) (Φn, Φn)









·









a0
a1
...

an









=









(f, Φ0)
(f, Φ1)

...
(f, Φn)









,

Matrix of this system is known as Gram’s matrix. It can be shown that this matrix
is regular if system of functions {Φi} is linearly independent, having unique solution of
given approximation problem.

System of equations (8.2.1) can be simple solved if the system of functions {Φ} is
orthogonal. Namely, all off-diagonal elements of matrix of system are equal to zero, i.e.
matrix is diagonal one, having as solutions

(8.2.2) ai = ai =
(f, Φi)
(Φi, Φi)

(i = 0, 1, . . . , n).

It can be shown that by taking in the given way chosen parameters ai (i = 0, 1, . . . , n)
the function I reaches its minimal value. Namely, because

∂2I
∂aj∂ak

= 2(Φk, Φj) = 2||Φk||2δkj ,

where δkj is Cronecker delta, we have

d2I = 2
n

∑

i=0

||Φk||2da2
k > 0.
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Thus, the best mean-square approximation of function f in subspace Xn =
L(Φ0, Φ1, . . . , Φn), where {Φi} is orthogonal system of functions, is given as

(8.2.3) Φ∗(x) =
n

∑

i=0

(f, Φi)
||Φi||2

Φi(x).

A very important class of mean-square approximations is approximation by algebraic
polynomials. In this case, the orthogonal basis of semi-space Xn is constructed by
Gramm-Schmidt orthogonalisation procedure, starting, for example, from natural basis
{1, x, x2, . . . , xn} (see Chapter IV), or general methods for orthogonalisation.

Example 8.2.1. For function x → f(x) = |x| on segment [−1, 1] determine in the set of polynomials not
greater degree than three, best mean-square approximation, with weight function x → p(x) = (1−x2)3/2.

Let us compute integral

Nk =
∫ 1

−1
x2k(1− x2)3/2 dx (k ∈ N0)

needed for further considerations (see [4], pp. 92-93). By partial integration over the
integral

Nk−1 −Nk =
∫ +1

−1
x2(k−1)(1− x2)5/2 dx (k ∈ N),

we get Nk−1−Nk =
5

2k − 1
Nk, i.e. Nk = 3π

2k − 1
2k + 4

Nk−1, (k ∈ N) so that, with N0 =
3π
8

we have

Nk = 3π
(2k − 1)!!
(2k + 4)!!

(k ∈ N). Starting from natural basis {1, x, x2, . . .}, using Gramm-Schmidt

orthogonalisation, we get subsequently

Φ0(x) = 1

Φ1(x) = x− (x, Φ0)
(Φ0,Φ0)

Φ0(x) = x,

Φ2(x) = x2 −N1N−1
0 = x2 − 1

6
,

Φ3(x) = x3 −N2N−1
1 x = x3 − 3

8
x,

and corresponding norms

||Φ0|| =
√

3π
8

, ||Φ1|| =
√

π
4

, ||Φ2|| =
1
8

√

5π
5

, ||Φ3|| =
√

3π
32

.

Because of
(f, Φ0) =

2
5
, (f, Φ1) = 0, (f, Φ2) =

1
21

, (f, Φ3) = 0,

using (8.2.2) we get
a0 =

16
15π

, a1 = 0, a2 =
128
35π

, a3 = 0,

having, finally approximation in the form

Φ∗(x) =
16
15π

+
128
35π

(x2 − 1
6
) ∼= 0.14551309 + 1.1641047x2.

This function is, in addition, best approximation in the set of polynomials of degree not
greater than two.

Some further very valuable considerations can be found in [1], pp. 96-99.
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8.3. Mean-square approximation with boundaries

Mean-square approximations can be applied to different class of functions and weight
functions. Taking Gegenbauer weight function x → p(x) = (1 − x2)λ−1/2 on [−1, 1] for real
functions which belong to some class of functions like

FE = {f | f(−x) = f(x), f(1) = 0, f ∈ L2[−1, 1]}

and
FO = {f | f(−x) = −f(x), f(1) = 0, f ∈ L2[−1, 1]}

where to the approximation functions are intruded such limitations so that they belong
to the same class of functions. Such approximations are often demanded in practice.
Note that FE denotes class of even functions and FO class of odd functions with zero
values in points x = 1 and x = −1.

It is possible to consider more general case of approximation using other weight
functions and other boundaries. In this case we take for weight function p(x) Gegenbauer
function and boundaries over approximation function such that belongs to the same class
of function like function f .

Thus, scalar product is

(8.3.1) (f, g) =

1
∫

−1

p (x)f(x)g(x) dx (p (x) = (1− x2)λ−1/2, λ > −1/2)

Let further Pm be set of all algebraic polynomials of degree not grater than m and
belong to set FE if m even, and to FO if m odd. For function f ∈ FE (or FO) we will
determine mean-square approximation in class P2n (or P2n+1) in regard to norm involved
by scalar product (8.3.1). So we have that approximations Φ2n and Φ2n+1 are solutions of
two minimization problems, respectively:

min
Φ∈P2n

||f − Φ||, when f ∈ FE,(8.3.2)

and
min

Φ∈P2n+1
||f − Φ||, when f ∈ FO.(8.3.3)

In general case, when f is neither even nor odd, but satisfies condition f(−1) = f(1) = 0,
mean-square approximation ψm (in class of polynomials of degree not greater than m),
which satisfies the conditions ψm(−1) = ψm(1) = 0 is simple to be obtained as

ψm(x) = Φ2n(x) + Φ2n+1(x), when m = 2n + 1,

ψm(x) = Φ2n(x) + Φ2n−1(x), when m = 2n,

where Φ2n and Φ2n±1 are solutions of problems (8.3.2) and (8.3.3), what follows from
representation

f(x) =
1
2
(f(x) + f(−x)) +

1
2
(f(x)− f(−x)).

Some advanced results are given by Milovanović and Wrigge in ([6] and [1], pp.
101-105).

8.4. Economization of power series

As previously mentioned, for function evaluation are often used polynomial devel-
opments. For example, if function f on segment [−1, 1] has development

f(x) = a0 + a1x + a2x2 + · · · ,
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then for evaluation of function value on segment [−1, 1] can be used the polynomial

(8.4.1) Pn(x) = a0 + a1x + a2x2 + · · ·+ anxn.

The procedure of power series economization, arising from Lanczos, consists from
lowering of degree of polynomial (8.4.1) with slightly error increasing, and proceeds
rather simple, by using orthogonal polynomials. Most frequently are used Chebyshev
and Legendre polynomials.

Consider economization by using Chebyshev polynomials Tk (k = 0, 1, . . .). Having

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1, T5(x) = 16x5 − 20x3 + 5x,

T6(x) = 32x6 − 48x4 + 18x2 − 1, T7(x) = 64x7 − 112x5 + 56x3 − 7x,

etc., it is possible to express algebraic degrees xk (k = 0, 1, . . .) using Chebyshev basis, in
the following way:

1 = T0, x = T1, x2 =
1
2
(T0 + T2), x3 =

1
4
(3T1 + T3),

x4 =
1
8
(3T0 + 4T2 + T4), x5 =

1
16

(10T1 + 5T3 + T5),

x6 =
1
32

(10T0 + 15T2 + 6T4 + T6), x7 =
1
64

(35T1 + 21T3 + 7T5 + T7),

etc. In general case, it holds

xk =
1

2k−1

[k/2]
∑

i=0

(k
i

)

1 + δk,2i
Tk−2i(x).

Using these formulas, the polynomial (8.4.1) can be presented in the form

(8.4.2) Pn(x) = c0T0(x) + c1T1(x) + · · ·+ cnTn(x).

Denote with Pm set of all algebraic polynomials of degree not greater than m. Taking
first m + 1 (m < n) members in development (8.4.2), we get the polynomial

(8.4.3) Qm(x) = c0T0(x) + c1T1(x) + · · ·+ cmTm(x),

which is the approximation of Pn in set Pm.
In regard to fact that Chebyshev polynomials satisfy inequality |Tk(x) ≤ 1| (−1 ≤ x ≤

1), for approximation error it holds

|Pn(x)−Qm(x)| ≤ |cm+1|+ · · ·+ |cn| (−1 ≤ x ≤ 1).

The given approximation procedure is called Lanczos economization (it is suggested
to students to write a short-line software for this procedure using Mathematica). The
following theorem (without proof) explains the kind of approximation.

Theorem 8.4.1. The polynomial Qm, given by (8.4.3) represents in set Pm the best mean-square ap-
proximation with Tchebyshev weight function p(x) = (1− x2)−1/2 for polynomial Pn on segment [−1, 1].

Example 8.4.1. Using economization approximate x → x6 (|x| ≤ 1) by polynomial of degree not greater
than two.

Having x6 = 1
32 (10T0 + 15T2 + 6T4 + T6), by cutting off the last two members we get the

polynomial Q2(x) = 10
32 + 15

32 (2x2 − 1) = 15
16x2 − 5

32 , whereby the absolute error is lesser than
7
32 , i.e. it holds |x6 −Q2(x)| ≤ 7

32 .
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By development using Legendre polynomials (mean-square approximation with
weight p(x) = 1), the following approximation is obtained.

x6 ∼=
1
7
P0(x) +

10
21

P2(x) =
5
7
x2 − 2

21
(−1 ≤ x ≤ 1)

with absolute error not greater than 8/21. Note that this error is greater, i.e. 8/21 > 7/32.

8.5. Discrete mean-square approximation

In previous sections we considered problem of best approximation of function in
space L2(a, b). Now we will consider a particular case, mentioned in introductory section.
Namely, let function f : [a, b] → R be given on set of pairs of values {(xj , fj)}j=0,1,...,m, where
fj ≡ f(xj). We will consider the problem of best approximation of given function by linear
approximation function

(8.5.1) Φ(x) =
n

∑

i=0

aiΦi(x) (n < m)

in sense of minimization of norm (8.1.4), where p : [a, b] → R+ is given weight function and
δn defined by (8.1.2). By involving the matrix notation

X =









Φ0(x0) Φ1(x0) . . . Φn(x0)
Φ0(x1) Φ1(x1) . . . Φn(x1)

...
Φ0(xm) Φ1(xm) . . . Φn(xm)









, ~f =









f0

f1
...

fn









, ~a =









a0

a1
...

an









,

P = diag(p(x0), p(x1), . . . , p(xm)), ~v = ~f −X~a,

square of norm, defined by (8.1.4), can be represented as

(8.5.2) F = ||δn||2 = ||δn||22 =
m

∑

j=0

p(xj)δn(xj)2 = ~v T P~v.

For determination of best discrete mean-square approximation (8.5.1)it is necessary
to minimize F , given by (8.5.2). Thus, based on

∂F
∂ai

= 2
m

∑

j=0

p(xj)δn(xj)
∂δn(xj)

∂ai
= 0 (i = 0, 1, . . . , n)

we get normal system of equations

(8.5.3)
m

∑

j=0

p(xj)δn(xj)Φi(xj) = 0 (i = 0, 1, . . . , n)

for determination of parameters ai, (i = 0, 1, . . . , n). The last system of equations can be
given in matrix form

~v T P~v = ~0,

i.e.

(8.5.4) XT PX~a = XT P~f.

Note that normal system of equations (8.5.3), i.e (8.5.4) is obtained from overdefined
system of equations (8.1.1), given in matrix form as

X~a = ~f,
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by simple multiplication by matrix XT P from the left side.
Diagonal matrix P, which is called weight matrix, is of meaning so that larger weights

pj ≡ p(xj) are assigned to the values of function fj with greater accuracy. This is of
importance when approximating experimental data, which are obtained during measures
by different accuracy. For example, for measurements realized with different dispersions,
which relations are known, the weights pj are chosen as inverse of dispersions, i.e, such
that

p0 : p1 : · · · : pm =
1
σ2

0
:

1
σ2

1
: · · · : 1

σ2
m

.

When the measurements are realized with same accuracy, but with different numbers
of measurements, i.e. for every value of argument xj are proceeded mj measurements,
and for fj taken arithmetic means of obtained results in series of measurements, then
for weights are taken numbers measurements in series, i.e. pj = mj (j = 0, 1, . . . , m).
Nevertheless, usually are the weights equal, i.e. P is unit matrix of order m + 1. In this
case, (8.5.4) reduces to

(8.5.5) XT X~a = XT ~f.

Vector of coefficients ~a is determined from 8.5.4 or 8.5.5. From 8.5.5 it follows

~a = (XT X)−1XT ~f.

In case when the system of basic functions is chosen so that Φi(x) = xi (i = 0, 1, . . . , n)
we have

X =









1 x0 x2
0 . . . xn

0
1 x1 x2

1 xn
1

...
1 xm x2

m xn
m









.

The method considered is often called least-square method. Interesting case is when
n = 1, i.e. when the approximation function is of form Φ(x) = a0 + a1x. Then the system
(8.5.4) becomes

[

s11 s12

s21 s22

]

·
[

a0

a1

]

=
[

b0

b1

]

,

where
s11 =

m
∑

j=0

pj , s12 = s21 =
m

∑

j=0

pjxj , s22 =
m

∑

j=0

pjx2
j ,

b0 =
m

∑

j=0

pjfj , b1 =
m

∑

j=0

pjxjfj .

The asked approximation parameters are

a0 =
1
D

(s22b0 − s12b1), a1 =
1
D

(s11b1 − s21b0),

where D = s11s22 − s2
12.

Example 8.5.1. Find parameters a0 and a1 in approximation function Φ(x) = a0 + a1x using least-
square method, for function given in tabular form, as a set of values pairs

{(1.1, 2.5), (1.9, 3.2), (4.2, 4.5), (6.1, 6.0)}.

For weight matrix P we can take unit matrix. The previously given formulas can
be directly applied, but we can start from overdefined system of equations







1 1.1
1 1.9
1 4.2
1 6.1





 ·
[

a0

a1

]

=







2.5
3.2
4.5
6.0





 ,
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By multiplying with matrix XT =
[

1 1 1 1
1.1 1.9 4.2 6.1

]

from the left side, we get the

normal system of equations
[

4 13.3
13.3 59.67

]

·
[

a0

a1

]

=
[

16.2
64.33

]

,

wherefrom it follows
[

a0

a1

]

=
1

61.79

[

59.67 −13.3
−13.3 4.

]

·
[

16.2
64.33

]

=
[

1.7974591
0.6774559

]

,

Thus, we have Φ(x) = 1.7974591 + 0.6774559x.
In case when n > 1, least-square method becomes complicated because the obtained

system of linear equations is more difficult to be solved. This system could be simple
solved if the system matrix reduces to diagonal matrix, what happens when system {Φk}
is orthogonal system of polynomials, meaning that all off-diagonal matrix members are
equal to zero. These orthogonal polynomials are discrete (see [4], pp. 154-159). Thus,
one shell take Φk(x) = Q(N)

k (x) (k = 0, 1, . . . , N) where N − 1 = m and scalar product defined
as

(f, g) = [f, g]N =
N−1
∑

i=0

pif(xi)g(xi).

As already known, series of orthogonal polynomials can be obtained by Sieltjes pro-
cedure, i.e. it is possible to determine coefficients β(N)

k and γ(N)
k in recurrence relation

(2.5.15) (see [4], p. 155).
It is suggested to students to write code for very usable Stieltjes procedure for

continuous and discrete orthogonal polynomials, using system Mathematica (hint: see
[8]).

Similar to continuous mean-square approximation, we get the discrete one in form

Φ(x) =
n

∑

i=0

aiQ
(N)
i (x),

where approximation parameters are given as

(8.5.6) ak =
[f,Q(N)

k ]N
||Q(N)

k ||2
, (k = 0, 1, . . . , n).

In case when points xi are equidistant (taking, without generality lessening, xi = i (i =
0, 1, . . . , N − 1)) and with equal weights (for example, pi = 1/N), we have the case of dis-
crete Chebyshev polynomials, with explicit known coefficients of three-term recurrence
relation (see [4], pp. 156-157). Mean-square approximations are in this case simple to
obtain.

In many areas of science and technology, dealing with experimental data, we have
often of parameter determination in so known empirical formulas which express func-
tional relation between two or more variables. For example, when functional relation
given as

y = f(x; a0, a1, . . . , an),

where ai (i = 0, 1, . . . , n) are parameters which are to be determined using the following
tabulated data obtained by measurement.

i 0 1 . . . m

xi x0 x1 . . . xm

yi y0 y1 . . . ym
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The measured data contain accidental errors of measurements, i.e. ”noise” in ex-
periment. Determination of parameters ai (i = 0, 1, . . . , n) is, from the point of theory of
approximation, possible only if m ≥ n. In case of m = n, we have interpolation, which is,
in general case nonlinear, what depends on function shape. In order to eliminate ”noise”
in data, and obtain greater exactness and reliability, the number of measurements should
be large enough. Then, the most used method for determination of parameters is least-
square method, i.e. minimization of variable F defined by

(8.5.7) F =
m

∑

j=0

(yj − f(xj ; a0, a1, . . . , an))2,

or using

F =
m

∑

j=0

pj (yj − f(xj ; a0, a1, . . . , an))2,

where are included weights pj. If functional relation between several variables is given
as

z = f(x, y; a0, a1, . . . , an)

for determination of approximation parameters we have to minimize

F =
m

∑

j=0

pj (zj − f(xj , yj ; a0, a1, . . . , an))2.

If f is linear approximation function (in parameters a0, a1, . . . , an), i.e. of form (8.5.1),
the problem is to be solved in previously explained way. Nevertheless, if f is nonlinear
approximation function, then the corresponding normal system of equation

(8.5.8)
∂F
∂ai

= 0 (i = 0, 1, . . . , n)

nonlinear. For solving of this system can be used some method for solution of system
of nonlinear equations, like Newton-Kantorovich method, whereby is this procedure
rather complicated. In order to solve problem in easier way, there are some simplified
methods of transformation of such problems to linear approximation method. Namely,
by introducing some substitutions, like

(8.5.9) X = g(x), Y = h(y)

nonlinear problem reduces to linear one.
For example, let y = f(x; a0, a1) = a0ea1x.Then, by logaritmization and substitution

X = x, Y = log y, b0 = log a0, b1 = a1,

the problem is reduced to linear one, because Y = b0 + b1X. Thus, by minimization of

(8.5.10) G = G(b0, b1) =
m

∑

j=0

(Yj − b0 − b1Xj)2,

where Xj = xj and Yj = log yj (j = 0, 1, . . . , n), we determine the parameters b0 and b1, and
then

a0 = eb0 and a1 = b1.

Nevertheless, this procedure does not give the same result like the minimization of
function

F = F (a0, a0) =
m

∑

j=0

(yj − a0ea1xj )2.
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Moreover, the obtained results can significantly deviate, because the problem we are
solving is different from stated one, having in mind transformation we have done (Y =
log y). But, for many practical engineering problems the parameters obtained in this
way are satisfactory.

We will specify some typical functional dependencies with possible transformation
of variables.
10 y = a0xa1 , X = log x, Y = log y, b0 = log a0, b1 = a1;

20 y = a0ax
1 , X = x, Y = log y, b0 = log a0, b1 = log a1;

30 y = a0 +
a1

x
, X =

1
x

, Y = y, b0 = a0, b1 = a1;

40 y = a0 +
a1

x
, X = x, Y = xy, b0 = a1, b1 = a0;

p
50 y =

1
a0 + a1x

, X = x, Y =
1
y
, b0 = a0, b1 = a1;

60 y =
x

a0 + a1x
, X =

1
x

, Y =
1
y
, b0 = a1, b1 = a0;

70 y =
x

a0 + a1x
, X = x, Y =

x
y

, b0 = a0, b1 = a1;

80 y =
1

a0 + a1e−x , X = e−x, Y =
1
y
, b0 = a0, b1 = a1;

90 y = a0 + a1 log x, X = log x, Y = y, b0 = a0, b1 = a1.

Example 8.5.3. Result of measurements of values x and y are given in following tabular form.

i 0 1 2 3 4 5

xi 4.48 4.98 5.60 6.11 6.62 7.42
yi 4.15 1.95 1.31 1.03 0.74 0.63

If y =
1

a0 + a1x
, reduce to linear problem and approximate using least-square method.

By involving X = x, Y = 1/y and using least-square method we get approximation
function Φ(X) ∼= 0.468X − 1.843, wherefrom it follows y ∼=

1
0.468x− 1.843

.
From the previous one can conclude that, depending on f the convenient replace-

ments (3.5.9) should be chosen so that they enable reducing of

y = f(x; a0, a1, . . . , an)

to linear form of, for example, polynomial type

(8.5.11) Y = b0 + b1X + . . . + bnXn.

It is clear that functions g and h must have their inverse functions, so that (8.5.11) is, in
fact, equivalent to

h−1(Y ) = f(g−1(X); a0, a1, . . . , an),

whereby parameters bi depend on parameters ai in rather simple way.

8.6. Chebyshev min-max approximation

In this section will be given basics of min−max approximation of function f ∈ C[a, b]
by algebraic polynomials. Most of results can be translated to more general types of
approximating functions.



Lesson VIII - Approximations of Functions 145

Let denote with Pn set of all algebraic polynomials of degree not greater than n. We
have the problem of determination of polynomial Pn = P ∗n(inPn) which minimizes norm
||f − Pn||∞. Thus, the minimization problem of form

En(f) = min
Pn∈Pn)

( max
a≤x≤b

|f(x)− Pn(x)|) = max
a≤x≤b

|f(x)− P ∗n(x)|,

where En(f) is the value of best approximation, is to be solved.
Algebraic polynomials are very good approximation elements on finite segment [a, b]

and therefor often used at min−max approximations, and at approximations at all.
Weierstrass’ theorem defines existence of polynomials of large enough degree, which
has arbitrary small deviation from continuous function on [a, b]. The following theorem,
nevertheless, gives criterion for statement that given polynomial is the best min−max
approximation of given continuous function on [a, b] in class of algebraic polynomials Pn.

Theorem 8.6.1. The polynomial P ∗n is the best min−max approximation of function f ∈ [a, b] in set
Pn if and only if on segment [a, b] exist n + 2 points x0, x1, . . . , xn+1 (x0 < x1 < · · · < xn+1) such that

(8.6.1) δ∗n(xk) = −δ∗n(xk+1) = ±||δ∗n||∞ = ±En(f),

whereby δ∗n(x) = f(x)− P ∗n(x).

The proof of existence and uniqueness of polynomial P ∗n can be found, for example,
in [9]. Using the theorem of Weierstrass one can prove that En(f) → 0 if n → +∞.

If for some polynomial of degree n exist n + 2 points with feature (8.6.1), we say that
it has Chebyshev alternation for f . If εk = (−1)k+1, (8.6.1) can be expressed as

(8.6.2) δ∗n(x0) + εkδ∗n(xk) = 0 (k = 1, . . . , n + 1)

Example 8.6.1. For function x → f(x) = xn+1 (|x| ≤ 1) and

δn(x) = xn+1 − Pn(x),

where Pn(x) =
n
∑

i=0
aixi find the best min−max approximation.

From the expression for Chebyshev polynomial Tn+1(x) = cos[(n + 1)arccosx] = ±1, it
follows xk = − cos kπ

n+1 (k = 0, 1, . . . , n + 1), where −1 = x0 < x1 < · · · < xn+1 = 1, we conclude
that on [−1, 1] exist n + 2 points in which Tn+1(xk) = (−1)n+k+1 (k = 0, 1, . . . , n + 1).

If we put δ∗n(x) =
1
2n Tn+1(x), then |δ∗n(x)| ≤ 1

2n (|x| < 1) and δ∗n(xk) =
1
2n (−1)n+k+1 satisfies

(8.6.2).
Based on previous and Theorem (8.6.1) we conclude that the best min−max polyno-

mial P ∗n for function x → f(x) = xn+1 (|x| ≤ 1) can be obtained from equality

xn+1 − P ∗n(x) =
1
2n Tn+1(x).

Thus,
P ∗n(x) = xn+1 − 1

2n Tn+1(x).

In special case, for n = 1, 2, 3 we have

x2 ∼ P ∗1 (x) =
1
2
, x3 ∼ P ∗2 (x) =

3
4
x, x4 ∼ P ∗3 (x) = x2 − 1

8
.

Note that approximation of function x → xn+1 (|x| ≤ 1) in set Pn using min−max
approximation, and mean squares approximation with weight function (1− x2)−1/2, give
the same approximating polynomials.
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Based on Theorem 8.6.1 the algorithms for determination of best min-max approx-
imation of given function are constructed. One of the most convenient algorithms is
Remes algorithm. One version of Remes algorithm can be given in the following way.
10 The set of n + 2 successive points x0, x1, . . . , xn+1 on segment [a, b] is to be chosen and

coefficients of polynomial Pn and value of E are determined so that

(8.6.3) f(xk)− Pn(xk) = (−1)kE (k = 0, 1, . . . , n + 1).

20 Determine the set of n + 2 points x̂0, x̂1, . . . , x̂n+1, on [a, b] in which δn(x) = f(x)− Pn(x)
has successive local extremes with alternative signs, including in this set the point
in which the value |δn(x)| has maximal value on [a, b].

30 For in advance given accuracy ε the conditions |x̂k − xk| < ε (k = 0, 1, . . . , n + 1) are
checked. If at least one of these conditions is not satisfied, one takes xk = x̂k (k =
0, 1, . . . , n + 1) and skips to 10. When all conditions are satisfied, algorithm ends and
polynomial Pn is taken as best min-max approximation P ∗n .
Having in mind that Theorem 8.6.1 (on Chebyshev alternation) can be formulated

for some more general types of approximating functions, as, for example, linear ap-
proximation function and rational approximating function, Remes algorithm can be
applied in this cases too. Note that in case when we have nonlinear approximating
function, system of equations (8.6.3) becomes nonlinear and usually has to be solved
with Newton-Kantorovich method. In order to shorten the procedure, only a few first
steps in iteration are performed.

Very often, for obtaining min-max approximation, the problem is replaced by cor-
responding discrete mini-max problem. This procedure is given concise in ([1], pp.
121-122). The readers are encouraged to write a code for program realization of given
algorithms in arbitrary programming language.

8.7. Packages for approximation of functions

Procedures for developing polynomials for discrete data are very important in engi-
neering practice. The direct fit polynomials, the Lagrange polynomial, and the divided
difference polynomial work well for nonequally spaced data. For equally spaced data,
polynomials based on differences are recommended.

Procedures for developing least squares approximations for discrete data are also
valuable in engineering practice. Least squares approximations are useful for large sets of
data and sets of rough data. Least square polynomial approximation is straightforward,
for both one independent variable and more than one variable. The least squares normal
equations corresponding to polynomial approximating functions are linear, which leads
to very efficient solving procedures. For nonlinear approximating functions, the least
squares normal equations are nonlinear, which leads to complicated solution procedures.
As previously mentioned, convenient mapping of nonlinear approximating function to
linear one (i.e. linearization) can solve this problem usually good enough. Least squares
polynomial approximation is a straightforward, simple, and accurate procedure for ob-
taining approximating functions for large sets of data or sets of rough experimental
data.

Numerous libraries and software packages are available for approximation of func-
tions, especially for polynomial approximation.

Many commercial software packages contain routines for fitting approximating poly-
nomials. Some of the more prominent packages are Matlab and Mathcad. More sophisti-
cated packages, such as IMSL, Mathematica, and Macsyma contain also routines for fitting
approximating polynomials. The book Numerical Recipes ([5]) contains numerous sub-
routines for fitting approximating polynomials (see Chapter 15, Modelling of Data),
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and the book Numerical Methods for Engineers and Scientists. ([2]) program code
for fitting approximating polynomials (see Chapter 4, Polynomial Approximation and
Interpolation).
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