
Faculty of Civil Engineering Belgrade
Master Study COMPUTATIONAL ENGINEERING
Fall semester 2004/2005

LECTURES

LESSON VI

Chapter 6. Special Functions

6.0 Introduction There is nothing particularly special about
a special function, except that some person in authority or
textbook writer (not the same thing!) has decided to bestow
the moniker. Special functions are sometimes called higher
transcendental functions (higher than what?) or functions of
mathematical physics (but they occur in other fields also) or
functions that satisfy certain frequently occurring second-order
differential equations (but not all special functions do). One
might simply call them useful functions and let it go at that; it
is surely only a matter of taste which functions we have chosen
to include in this chapter. Good commercially available pro-
gram libraries, such as NAG or IMSL, contain routines for a
number of special functions. These routines are intended for
users who will have no idea what goes on inside them. Such
state of the art black boxes are often very messy things, full
of branches to completely different methods depending on the
value of the calling arguments. Black boxes have, or should
have, careful control of accuracy, to some stated uniform pre-
cision in all regimes. We will not be quite so fastidious in
our examples, in part because we want to illustrate techniques

1

from Chapter 5, and in part because we want you to understand
what goes on in the routines presented. Some of our routines
have an accuracy parameter that can be made as small as de-
sired, while others (especially those involving polynomial fits)
give only a certain accuracy, one that we believe serviceable
(typically six significant figures or more). We do not certify
that the routines are perfect black boxes. We do hope that, if
you ever encounter trouble in a routine, you will be able to di-
agnose and correct the problem on the basis of the information
that we have given. In short, the special function routines of
this chapter are meant to be used we use them all the time
but we also want you to be prepared to understand their inner
workings. CITED REFERENCES AND FURTHER READ-
ING: Abramowitz, M., and Stegun, I.A. 1964, Handbook of
Mathematical Functions, Applied Mathe- matics Series, Vol-
ume 55 (Washington: National Bureau of Standards; reprinted
1968 by Dover Publications, New York) [full of useful numer-
ical approximations to a great variety of functions]. IMSL
Sfun/Library Users Manual (IMSL Inc., 2500 CityWest Boule-
vard, Houston TX 77042). NAG Fortran Library (Numeri-
cal Algorithms Group, 256 Banbury Road, Oxford OX27DE,
U.K.), Chapter S. 205

206 Chapter 6. Special Functions Hart, J.F., et al. 1968,
Computer Approximations (New York: Wiley). Hastings,
C. 1955, Approximations for Digital Computers (Princeton:
Princeton University Press). Luke, Y.L. 1975,Mathematical
Functions and Their Approximations (New York: Academic
Press). 6.1 Gamma Function, Beta Function, Factorials, Bino-
mial Coefficients The gamma function is defined by the integral
tz - 1 e-t dt (6.1.1) G(z)= 8 0 When the argument z is an inte-
ger, the gamma function is just the familiar factorial function,
but offset by one, n!=G(n +1) (6.1.2) The gamma function

satisfies the recurrence relation G(z +1)=zG(z) (6.1.3) If the
function is known for arguments z¿1 or, more generally, in the
half complex plane Re(z) ¿ 1 it can be obtained for z¡1 or Re (z)
¡ 1 by the re ection formula G(1 - z)= p G(z)sin(pz) = pz G(1
+ z)sin(pz) (6.1.4) Notice that G(z) has a pole at z =0, and at
all negative integer values of z. There are a variety of methods
in use for calculating the function G(z) numerically, but none
is quite as neat as the approximation derived by Lanczos [1].
This scheme is entirely specific to the gamma function, seem-
ingly plucked from thin air. We will not attempt to derive the
approximation, but only state the resulting formula: For cer-
tain integer choices of and N , and for certain coefficients c1 ,c2
,...,cN , the gamma function is given by G(z +1)=(z + + 1 2 e-
(z + + 1 2) 2)z + 1 (6.1.5) v2p c0 + c1 z + N + (z¿0) z +1+
c2 z +2 + + cN You can see that this is a sort of take-off on
Stirlings approximation, but with a series of corrections that
take into account the first few poles in the left complex plane.
The constant c0 is very nearly equal to 1. The error term is
parametrized by . For =5, N =6, and a certain set of cs, the
error is smaller than — — ¡ 2 10-1 0 . Impressed? If not, then
perhaps you will be impressed by the fact that (with these

206 Chapter 6. Special Functions Hart, J.F., et al. 1968,
Computer Approximations (New York: Wiley). Hastings,
C. 1955, Approximations for Digital Computers (Princeton:
Princeton University Press). Luke, Y.L. 1975,Mathematical
Functions and Their Approximations (New York: Academic
Press). 6.1 Gamma Function, Beta Function, Factorials, Bino-
mial Coefficients The gamma function is defined by the integral
tz - 1 e-t dt (6.1.1) G(z)= 8 0 When the argument z is an inte-
ger, the gamma function is just the familiar factorial function,
but offset by one, n!=G(n +1) (6.1.2) The gamma function
satisfies the recurrence relation G(z +1)=zG(z) (6.1.3) If the

function is known for arguments z¿1 or, more generally, in the
half complex plane Re(z) ¿ 1 it can be obtained for z¡1 or Re (z)
¡ 1 by the re ection formula G(1 - z)= p G(z)sin(pz) = pz G(1
+ z)sin(pz) (6.1.4) Notice that G(z) has a pole at z =0, and at
all negative integer values of z. There are a variety of methods
in use for calculating the function G(z) numerically, but none
is quite as neat as the approximation derived by Lanczos [1].
This scheme is entirely specific to the gamma function, seem-
ingly plucked from thin air. We will not attempt to derive the
approximation, but only state the resulting formula: For cer-
tain integer choices of and N , and for certain coefficients c1 ,c2
,...,cN , the gamma function is given by G(z +1)=(z + + 1 2 e-
(z + + 1 2) 2)z + 1 (6.1.5) v2p c0 + c1 z + N + (z¿0) z +1+
c2 z +2 + + cN You can see that this is a sort of take-off on
Stirlings approximation, but with a series of corrections that
take into account the first few poles in the left complex plane.
The constant c0 is very nearly equal to 1. The error term is
parametrized by . For =5, N =6, and a certain set of cs, the
error is smaller than — — ¡ 2 10-1 0 . Impressed? If not, then
perhaps you will be impressed by the fact that (with these

6.1 Gamma, Beta, and Related Functions 207 same param-
eters) the formula (6.1.5) and bound on apply for the complex
gamma function, everywhere in the half complex plane Re z¿0.
It is better to implement ln G(x) than G(x), since the latter
will over ow many computers oating-point representation at
quite modest values of x. Often the gamma function is used
in calculations where the large values of G(x) are divided by
other large numbers, with the result being a perfectly ordinary
value. Such operations would normally be coded as subtrac-
tion of logarithms. With (6.1.5) in hand, we can compute the
logarithm of the gamma function with two calls to a logarithm
and 25 or so arithmetic operations. This makes it not much

more difficult than other built-in functions that we take for
granted, such as sin x or e x : FUNCTION gammln(xx) REAL
gammln,xx Returns the value ln[G(xx)] for xx ¿ 0. INTE-
GER j DOUBLE PRECISION ser,stp,tmp,x,y,cof(6) Internal
arithmetic wi ll be done in double precision, a nicety that you
can omit if five-figure accuracy is good enough. SAVE cof,stp
DATA cof,stp/76.18009172947146d0,-86.50532032941677d0, *
24.01409824083091d0,-1.231739572450155d0,.1208650973866179d-
2, * -.5395239384953d-5,2.5066282746310005d0/ x=xx y=x
tmp=x+5.5d0 tmp=(x+0.5d0)*log(tmp)-tmp ser=1.000000000190015d0
do 1 1 j=1,6 y=y+1.d0 ser=ser+cof(j)/y enddo 1 1 gammln=tmp+log(stp*ser/x)
return END How shall we write a routine for the factorial
function n!? Generally the factorial function will be called
for small integer values (for large values it will over ow any-
way!), and in most applications the same integer value will be
called for many times. It is a pro igate waste of computer time
to call exp(gammln(n+1.0)) for each required factorial. Bet-
ter to go back to basics, holding gammln in reserve for unlikely
calls: FUNCTION factrl(n) INTEGER n REAL factrl C USES
gammln Returns the value n! as a oating-point number. IN-
TEGER j,ntop REAL a(33),gammln Table to be filled in only
as required. SAVE ntop,a DATA ntop,a(1)/0,1./ Table initial-
ized with 0! only. if (n.lt.0) then pause negative factorial in
factrl else if (n.le.ntop) then Already in table. factrl=a(n+1)
else if (n.le.32) then Fill in table up to desired value. do 1 1
j=ntop+1,n

208 Chapter 6. Special Functions a(j+1)=j*a(j) enddo 1
1 ntop=n factrl=a(n+1) else Larger value than size of table is
required. Actually, this big a value is going to over ow on many
computers, but no harm in trying. factrl=exp(gammln(n+1.))
endif return END A useful point is that factrl will be exact for
the smaller values of n, since oating-point multiplies on small

integers are exact on all computers. This exactness will not
hold if we turn to the logarithm of the factorials. For bino-
mial coefficients, however, we must do exactly this, since the
individual factorials in a binomial coefficient will over ow long
before the coefficient itself will. The binomial coefficient is
defined by n k = n! k!(n - k)! 0 = k = n (6.1.6) FUNC-
TION bico(n,k) INTEGER k,n REAL bico C USES factln
Returns the binomial coe cient n k as a oating-point num-
ber. REAL factln bico=nint(exp(factln(n)-factln(k)-factln(n-
k))) return The nearest-integer function cleans up roundo er-
ror for smaller values of n and k. END which uses FUNCTION
factln(n) INTEGER n REAL factln C USES gammln Returns
ln(n!). REAL a(100),gammln SAVE a DATA a/100*-1./ Ini-
tialize the table to negative values. if (n.lt.0) pause negative
factorial in factln if (n.le.99) then In range of the table. if
(a(n+1).lt.0.) a(n+1)=gammln(n+1.) If not already in the ta-
ble, put it in. factln=a(n+1) else factln=gammln(n+1.) Out
of range of the table. endif return END

209 6.2 Incomplete Gamma Function If your problem re-
quires a series of related binomial coefficients, a good idea is
to use recurrence relations, for example n k = n n +1 k = n
+1 n - k +1 k + n k - 1 (6.1.7) n k n k +1 = n - k k +1
Finally, turning away from the combinatorial functions with
integer valued arguments, we come to the beta function, tz
-1 (1 - t)w -1 dt (6.1.8) B(z, w)=B(w, z)= 1 0 which is re-
lated to the gamma function by B(z,w)= G(z)G(w) (6.1.9) G(z
+ w) hence FUNCTION beta(z,w) REAL beta,w,z C USES
gammln Returns the value of the beta function B(z, w). REAL
gammln beta=exp(gammln(z)+gammln(w)-gammln(z+w)) re-
turn END CITED REFERENCES AND FURTHER READ-
ING: Abramowitz, M., and Stegun, I.A. 1964, Handbook of
Mathematical Functions, Applied Mathe- matics Series, Vol-

ume 55 (Washington: National Bureau of Standards; reprinted
1968 by Dover Publications, New York), Chapter 6. Lanczos,
C. 1964, SIAM Journal on Numerical Analysis, ser. B, vol. 1,
pp. 8696. [1] 6.2 Incomplete Gamma Function, Error Function,
Chi-Square Probability Function, Cumulative Poisson Function
The incomplete gamma function is defined by x P(a, x) = (a,
x) e-t ta- 1 dt (a¿0) (6.2.1) G(a) = 1 G(a) 0

209 6.2 Incomplete Gamma Function If your problem re-
quires a series of related binomial coefficients, a good idea is
to use recurrence relations, for example n k = n n +1 k = n
+1 n - k +1 k + n k - 1 (6.1.7) n k n k +1 = n - k k +1
Finally, turning away from the combinatorial functions with
integer valued arguments, we come to the beta function, tz
-1 (1 - t)w -1 dt (6.1.8) B(z, w)=B(w, z)= 1 0 which is re-
lated to the gamma function by B(z,w)= G(z)G(w) (6.1.9) G(z
+ w) hence FUNCTION beta(z,w) REAL beta,w,z C USES
gammln Returns the value of the beta function B(z, w). REAL
gammln beta=exp(gammln(z)+gammln(w)-gammln(z+w)) re-
turn END CITED REFERENCES AND FURTHER READ-
ING: Abramowitz, M., and Stegun, I.A. 1964, Handbook of
Mathematical Functions, Applied Mathe- matics Series, Vol-
ume 55 (Washington: National Bureau of Standards; reprinted
1968 by Dover Publications, New York), Chapter 6. Lanczos,
C. 1964, SIAM Journal on Numerical Analysis, ser. B, vol. 1,
pp. 8696. [1] 6.2 Incomplete Gamma Function, Error Function,
Chi-Square Probability Function, Cumulative Poisson Function
The incomplete gamma function is defined by x P(a, x) = (a,
x) e-t ta- 1 dt (a¿0) (6.2.1) G(a) = 1 G(a) 0

210 Chapter 6. Special Functions 1.0 0.5 1.0 a = 3.0 a =
10 .2 .4 .6 .8 0 02 4 6 8101214 x Figure 6.2.1. The incomplete
gamma function P (a, x) for four values of a. It has the limiting
values P (a, 0) = 0 and P (a, 8)=1 (6.2.2) The incomplete

gamma function P (a, x) is monotonic and (for a greater than
one or so) rises from near-zero to near-unity in a range of x
centered on about a - 1, and of width about va (see Figure
6.2.1). The complement of P (a, x) is also confusingly called
an incomplete gamma function, 8 Q(a, x) = 1 - P(a, x) = G(a,
x) e-tta- 1 dt (a¿0) (6.2.3) G(a) = 1 G(a) x It has the limiting
values Q(a, 0) = 1 and Q(a, 8)=0 (6.2.4) The notations P (a,
x), (a, x), and G(a, x) are standard; the notation Q(a, x) is
specific to this book. There is a series development for (a, x) as
follows: 8 G(a) (a, x)=e-x xa G(a +1+n) xn (6.2.5) n =0 One
does not actually need to compute a new G(a +1+n) for each
n; one rather uses equation (6.1.3) and the previous coefficient.

211 6.2 Incomplete Gamma Function A continued fraction
development for G(a, x) is 1 - a 1 2 - a 2 G(a, x)=e-x xa 1
x + 1+ x + 1+ x + (x¿0) (6.2.6) It is computationally bet-
ter to use the even part of (6.2.6), which converges twice as
fast (see 5.2): 1 (1 - a) 2 (2 - a) G(a, x)=e- xxa 1 x +1- a
- x +3- a - x +5- a - (x¿0) (6.2.7) It turns out that (6.2.5)
converges rapidly for x less than about a +1, while (6.2.6) or
(6.2.7) converges rapidly for x greater than about a +1. In
these respective regimes each requires at most a few times va
terms to converge, and this many only near x = a, where the
incomplete gamma functions are varying most rapidly. Thus
(6.2.5) and (6.2.7) together allow evaluation of the function for
all positive a and x. An extra dividend is that we never need
compute a function value near zero by subtracting two nearly
equal numbers. The higher-level functions that return P (a, x)
and Q(a, x) are FUNCTION gammp(a,x) REAL a,gammp,x
C USES gcf,gser Returns the incompl ete gamma function P
(a, x). REAL gammcf,gamser,gln if(x.lt.0..or.a.le.0.)pause bad
arguments in gammp if(x.lt.a+1.)then Use the series repre-
sentation. call gser(gamser,a,x,gln) gammp=gamser else Use

the continued fraction representation call gcf(gammcf,a,x,gln)
gammp=1.-gammcf and take its complement. endif return
END FUNCTION gammq(a,x) REAL a,gammq,x C USES
gcf,gser Returns the incomplete gamma function Q(a, x) = 1
- P (a, x). REAL gammcf,gamser,gln if(x.lt.0..or.a.le.0.)pause
bad arguments in gammq if(x.lt.a+1.)then Use the series repre-
sentation call gser(gamser,a,x,gln) gammq=1.-gamser and take
its complement. else Use the continued fraction representation.
call gcf(gammcf,a,x,gln) gammq=gammcf endif return END

212 Chapter 6. Special Functions The argument gln is re-
turned by both the series and continued fraction procedures
containing the value ln G(a); the reason for this is so that it
is available to you if you want to modify the above two pro-
cedures to give (a, x) and G(a, x), in addition to P (a, x)
and Q(a, x) (cf. equations 6.2.1 and 6.2.3). The procedures
gser and gcf which implement (6.2.5) and (6.2.7) are SUB-
ROUTINE gser(gamser,a,x,gln) INTEGER ITMAX REAL
a,gamser,gln,x,EPS PARAMETER (ITMAX=100,EPS=3.e-7)
C USES gammln Returns the incomplete gamma function P
(a, x) evaluated by its series representation as gamser. Also re-
turns ln G(a) as gln. INTEGER n REAL ap,del,sum,gammln
gln=gammln(a) if(x.le.0.)then if(x.lt.0.)pause x ¡ 0 in gser
gamser=0. return endif ap=a sum=1./a del=sum do 1 1
n=1,ITMAX ap=ap+1. del=del*x/ap sum=sum+del if(abs(del).lt.abs(sum)*EPS)goto
1 enddo 1 1 pause a too large, ITMAX too small in gser
1 gamser=sum*exp(-x+a*log(x)-gln) return END SUBROU-
TINE gcf(gammcf,a,x,gln) INTEGER ITMAX REAL a,gammcf,gln,x,EPS,FPMIN
PARAMETER (ITMAX=100,EPS=3.e-7,FPMIN=1.e-30) C
USES gammln Returns the incomplete gamma function Q(a,
x) eval uated by its continued fraction repre- sentation as
gammcf. Also returns ln G(a) as gln. Parameters: ITMAX
is the maximum allowed number of iterations; EPS is the

relative accu- racy; FPMIN i s a number near the small-
est representable oating-point number. INTEGER i REAL
an,b,c,d,del,h,gammln gln=gammln(a) b=x+1.-a Set up for
evaluating continued fraction by modified Lentzs method (5.2)
with b0 =0. c=1./FPMIN d=1./b h=d do 1 1 i=1,ITMAX
Iterate to convergence. an=-i*(i-a) b=b+2. d=an*d+b
if(abs(d).lt.FPMIN)d=FPMIN c=b+an/c if(abs(c).lt.FPMIN)c=FPMIN
d=1./d del=d*c

213 6.2 Incomplete Gamma Function h=h*del if(abs(del-
1.).lt.EPS)goto 1 enddo 1 1 pause a too large, ITMAX too
small in gcf 1 gammcf=exp(-x+a*log(x)-gln)*h Put factors in
front. return END Error Function The error function and com-
plementary error function are special cases of the incomplete
gamma function, and are obtained moderately efficiently by
the above procedures. Their definitions are x erf(x)= 2 vp
e-t2 dt (6.2.8) 0 and 8 vp erfc(x) = 1 - erf(x)= 2 e- t2 dt
(6.2.9) x The functions have the following limiting values and
symmetries: erf(0) = 0 erf(8)=1 erf(-x)=-erf(x) (6.2.10) erfc(0)
= 1 erfc(8)=0 erfc(-x)=2- erfc(x) (6.2.11) They are related to
the incomplete gamma functions by erf(x)=P 1 2 ,x2 (x =
0) (6.2.12) and erfc(x)=Q 1 2 ,x2 (x = 0) (6.2.13) Hence we
have FUNCTION erf(x) REAL erf,x C USES gammp Returns
the error function erf(x). REAL gammp if(x.lt.0.)then erf=-
gammp(.5,x**2) else erf=gammp(.5,x**2) endif return END

215 6.3 Exponential Integrals Chi-Square Probability Func-
tion P (2 —) is defined as the probability that the observed
chi-square for a correct model should be less than a value 2 .
(We will discuss the use of this function in Chapter 15.) Its
complement Q(2 —) is the probability that the observed chi-
square will exceed the value 2 by chance even for a correct
model. In both cases is an integer, the number of degrees of
freedom. The functions have the limiting values P (0—)=0 P

(8—)=1 (6.2.16) Q(0—)=1 Q(8—)=0 (6.2.17) and the fol-
lowing relation to the incomplete gamma functions, P (2 —
)=P 2 = gammp 2 (6.2.18) 2 , 2 2 , 2 Q(2 —)=Q 2 = gammq
2 (6.2.19) 2 , 2 2 , 2 CITED REFERENCES AND FURTHER
READING: Abramowitz, M., and Stegun, I.A. 1964, Handbook
of Mathematical Functions, Applied Mathe- matics Series, Vol-
ume 55 (Washington: National Bureau of Standards; reprinted
1968 by Dover Publications, New York), Chapters 6, 7, and
26. Pearson, K. (ed.) 1951, Tables of the Incomplete Gamma
Function (Cambridge: Cambridge University Press). 6.3 Ex-
ponential Integrals The standard definition of the exponential
integral is e-x t En (x)= 8 tn dt, x ¿ 0,n=0, 1,... (6.3.1) 1 The
function defined by the principal value of the integral et e- t
Ei(x)=- 8 t dt, x ¿ 0(6.3.2) t dt = x -x - 8 is also called an
exponential integral. Note that Ei(-x) is related to -E1 (x) by
analytic continuation. The function En (x) is a special case of
the incomplete gamma function En (x)=xn- 1 G(1 - n, x)(6.3.3)

216 Chapter 6. Special Functions We can therefore use a
similar strategy for evaluating it. The continued fraction just
equation (6.2.6) rewritten converges for all x¿0: n 1 n +1 2
En (x)=e-x 1 x + 1+ x + 1+ x + (6.3.4) We use it in its
more rapidly converging even form, 1 n 2(n +1) En (x)=e-x 1
x + n - x + n +2- x + n +4- (6.3.5) The continued fraction
only really converges fast enough to be useful for x ¿ 1. For
0 ¡x¡ 1, we can use the series representation 8 (-x)m En (x)=
(-x)n -1 (n - 1)! [- ln x + (n)] - (m - n +1)m! (6.3.6) m= 0
m=n -1 The quantity (n) here is the digamma function, given
for integer arguments by n- 1 1 (1) = - , (n)=- + m (6.3.7) m
=1 where =0.5772156649...is Eulers constant. We evaluate the
expression (6.3.6) in order of ascending powers of x: En (x)=-
1 (1 - n) - x (-1)(n - 2)! (2 - n) 1 + x2 (3 - n)(1 2) -+ (-x)n
-2 + (-x)n -1 2 (n +1)!+ (n - 1)! [- ln x + (n)] - (-x)n 1 n! +

(-x)n +1 (6.3.8) The first square bracket is omitted when n =1.
This method of evaluation has the advantage that for large n
the series converges before reaching the term containing (n).
Accordingly, one needs an algorithm for evaluating (n) only for
small n, n ¡ 20 40. We use equation (6.3.7), although a table
look-up would improve efficiency slightly. Amos [1] presents a
careful discussion of the truncation error in evaluating equation
(6.3.8), and gives a fairly elaborate termination criterion. We
have found that simply stopping when the last term added is
smaller than the required tolerance works about as well. Two
special cases have to be handled separately: E0 (x)= e-x x
(6.3.9) En (0) = 1 n - 1 ,n¿1

217 6.3 Exponential Integrals The routine expint allows
fast evaluation of En (x) to any accuracy EPS within the
reach of your machines word length for oating-point num-
bers. The only modification required for increased accuracy
is to supply Eulers constant with enough significant digits.
Wrench [2] can provide you with the first 328 digits if neces-
sary! FUNCTION expint(n,x) INTEGER n,MAXIT REAL ex-
pint,x,EPS,FPMIN,EULER PARAMETER (MAXIT=100,EPS=1.e-
7,FPMIN=1.e-30,EULER=.5772156649) Evaluates the expo-
nential integral En (x). Parameters: MAXIT is the maxi-
mum allowed number of iterations; EPS is the desired rel-
ative error, not smaller than the machine precision; FPMIN
is a number near the smallest representable oating-point num-
ber; EULER is Eulers constant . INTEGER i,ii,nm1 REAL
a,b,c,d,del,fact,h,psi nm1=n-1 if(n.lt.0.or.x.lt.0..or.(x.eq.0..and.(n.eq.0.or.n.eq.1)))then
pause bad arguments in expint else if(n.eq.0)then Special
case. expint=exp(-x)/x else if(x.eq.0.)then Another special
case. expint=1./nm1 else if(x.gt.1.)then Lentzs algorithm
(5.2). b=x+n c=1./FPMIN d=1./b h=d do 1 1 i=1,MAXIT
a=-i*(nm1+i) b=b+2. d=1./(a*d+b) Denominators cannot

be zero. c=b+a/c del=c*d h=h*del if(abs(del-1.).lt.EPS)then
expint=h*exp(-x) return endif enddo 1 1 pause continued frac-
tion failed in expint else Evaluate series. if(nm1.ne.0)then Set-
firstterm. expint=1./nm1 else expint=-log(x)-EULER endif
fact=1. do 1 3 i=1,MAXIT fact=-fact*x/i if(i.ne.nm1)then
del=-fact/(i-nm1) else psi=-EULER Compute (n). do 1 2
ii=1,nm1 psi=psi+1./ii enddo 1 2 del=fact*(-log(x)+psi) en-
dif expint=expint+del if(abs(del).lt.abs(expint)*EPS) return
enddo 1 3

218 Chapter 6. Special Functions pause series failed in
expint endif return END A good algorithm for evaluating Ei
is to use the power series for small x and the asymptotic se-
ries for large x. The power series is Ei(x)= +lnx + x 2
2! + (6.3.10) 1 1! + x2 where is Eulers constant. The
asymptotic expansion is Ei(x) ex x 1+ 1! x + 2! x2 +
(6.3.11) The lower limit for the use of the asymptotic ex-
pansion is approximately — ln EPS—, where EPS is the re-
quired relative error. FUNCTION ei(x) INTEGER MAXIT
REAL ei,x,EPS,EULER,FPMIN PARAMETER (EPS=6.e-
8,EULER=.57721566,MAXIT=100,FPMIN=1.e-30) Computes
the exponential integral Ei(x) for x¿0. Parameters: EPS is
the relative error, or absolute error near the zero of Ei at x
=0.3725; EULER is Eulers constant ; MAXIT is the maxi-
mum number of iterations allowed; FPMIN is a number near
the smallest representable oating-point number. INTEGER
k REAL fact,prev,sum,term if(x.le.0.) pause bad argument
in ei if(x.lt.FPMIN)then Special case: avoid fail ure of con-
vergence test be- cause of under ow. ei=log(x)+EULER else
if(x.le.-log(EPS))then Use power series. sum=0. fact=1. do
1 1 k=1,MAXIT fact=fact*x/k term=fact/k sum=sum+term
if(term.lt.EPS*sum)goto 1 enddo 1 1 pause series failed in ei 1
ei=sum+log(x)+EULER else Use asymptotic series. sum=0.

Start with second term. term=1. do 1 2 k=1,MAXIT
prev=term term=term*k/x if(term.lt.EPS)goto 2 Since final
sum is greater than one, term itself ap- proximates the rel-
ative error. if(term.lt.prev)then sum=sum+term Still con-
vergi ng: add new term. else sum=sum-prev Diverging: sub-
tract previous term and exit. goto 2 endif enddo 1 2 2
ei=exp(x)*(1.+sum)/x endif

219 6.4 Incomplete Beta Function, Students Distribution,
F-Distribution, Cumulative Binomial Distribution return END
CITED REFERENCES AND FURTHER READING: Stegun,
I.A., and Zucker, R. 1974, Journal of Research of the National
Bureau of Standards, vol. 78B, pp. 199216; 1976, op. cit.,
vol. 80B, pp. 291311. Amos D.E. 1980, ACM Transactions on
Mathematical Software, vol. 6, pp. 365377 [1]; also vol. 6, pp.
420428. Abramowitz, M., and Stegun, I.A. 1964, Handbook of
Mathematical Functions, Applied Mathe- matics Series, Vol-
ume 55 (Washington: National Bureau of Standards; reprinted
1968 by Dover Publications, New York), Chapter 5. Wrench
J.W. 1952, Mathematical Tables and Other Aids to Computa-
tion, vol. 6, p. 255. [2] 6.4 Incomplete Beta Function, Stu-
dents Distribution, F-Distribution, Cumulative Binomial Dis-
tribution The incomplete beta function is defined by x Ix (a, b)
= Bx (a, b) ta-1 (1 - t)b -1 dt (a, b ¿ 0) (6.4.1) B(a, b) = 1 B(a,
b) 0 It has the limiting values I0 (a, b)=0 I1 (a, b)=1 (6.4.2)
and the symmetry relation Ix (a, b)=1- I1 -x (b, a)(6.4.3) If
a and b are both rather greater than one, then Ix (a, b) rises
from near-zero to near-unity quite sharply at about x = a/(a +
b). Figure 6.4.1 plots the function for several pairs (a, b). The
incomplete beta function has a series expansion 8 B (a +1,n
+1) Ix (a, b)= xa (1 - x)b aB(a, b) 1+ B(a + b, n +1)xn +1
, (6.4.4) n =0 but this does not prove to be very useful in its
numerical evaluation. (Note, however, that the beta functions

in the coefficients can be evaluated for each value of n with just
the previous value and a few multiplies, using equations 6.1.9
and 6.1.3.) The continued fraction representation proves to be
much more useful, 1 d1 d2 Ix (a, b)= xa (1 - x)b aB(a, b) 1+
1+ 1+ (6.4.5)

219 6.4 Incomplete Beta Function, Students Distribution,
F-Distribution, Cumulative Binomial Distribution return END
CITED REFERENCES AND FURTHER READING: Stegun,
I.A., and Zucker, R. 1974, Journal of Research of the National
Bureau of Standards, vol. 78B, pp. 199216; 1976, op. cit.,
vol. 80B, pp. 291311. Amos D.E. 1980, ACM Transactions on
Mathematical Software, vol. 6, pp. 365377 [1]; also vol. 6, pp.
420428. Abramowitz, M., and Stegun, I.A. 1964, Handbook of
Mathematical Functions, Applied Mathe- matics Series, Vol-
ume 55 (Washington: National Bureau of Standards; reprinted
1968 by Dover Publications, New York), Chapter 5. Wrench
J.W. 1952, Mathematical Tables and Other Aids to Computa-
tion, vol. 6, p. 255. [2] 6.4 Incomplete Beta Function, Stu-
dents Distribution, F-Distribution, Cumulative Binomial Dis-
tribution The incomplete beta function is defined by x Ix (a, b)
= Bx (a, b) ta-1 (1 - t)b -1 dt (a, b ¿ 0) (6.4.1) B(a, b) = 1 B(a,
b) 0 It has the limiting values I0 (a, b)=0 I1 (a, b)=1 (6.4.2)
and the symmetry relation Ix (a, b)=1- I1 -x (b, a)(6.4.3) If
a and b are both rather greater than one, then Ix (a, b) rises
from near-zero to near-unity quite sharply at about x = a/(a +
b). Figure 6.4.1 plots the function for several pairs (a, b). The
incomplete beta function has a series expansion 8 B (a +1,n
+1) Ix (a, b)= xa (1 - x)b aB(a, b) 1+ B(a + b, n +1)xn +1
, (6.4.4) n =0 but this does not prove to be very useful in its
numerical evaluation. (Note, however, that the beta functions
in the coefficients can be evaluated for each value of n with just
the previous value and a few multiplies, using equations 6.1.9

and 6.1.3.) The continued fraction representation proves to be
much more useful, 1 d1 d2 Ix (a, b)= xa (1 - x)b aB(a, b) 1+
1+ 1+ (6.4.5)

220 Chapter 6. Special Functions 1 (0.5,5.0) (8.0,10.0)
(1.0,3.0) (0.5,0.5) .2 .4 .6 .8 (5.0,0.5) 0 0 .2 .4 .6 1 .8 x Fig-
ure 6.4.1. The incomplete beta function Ix (a, b) for five dif-
ferent pairs of (a, b). Notice that the pairs (0.5, 5.0) and
(5.0, 0.5) are symmetrically related as indicated in equation
(6.4.3). where d2 m+1 = - (a + m)(a + b + m)x (a +2m)(a
+2m +1) (6.4.6) d2 m = m(b - m)x (a +2m - 1)(a +2m)
This continued fraction converges rapidly for x¡(a +1)/(a +
b +2), taking in the worst case O(max(a, b)) iterations.
But for x¿(a +1)/(a + b +2)we can just use the symmetry
relation (6.4.3) to obtain an equivalent computation where
the continued fraction will also converge rapidly. Hence we
have FUNCTION betai(a,b,x) REAL betai,a,b,x C USES be-
tacf,gammln Returns the incomplete beta function Ix(a, b).
REAL bt,betacf,gammln if(x.lt.0..or.x.gt.1.)pause bad argu-
ment x in betai if(x.eq.0..or.x.eq.1.)then bt=0. else Factors
in front of the continued fraction. bt=exp(gammln(a+b)-
gammln(a)-gammln(b) * +a*log(x)+b*log(1.-x)) endif if(x.lt.(a+1.)/(a+b+2.))then
Use continued fraction directly.

221 6.4 Incomplete Beta Function, Students Distribu-
tion, F-Distribution, Cumulative Binomial Distribution be-
tai=bt*betacf(a,b,x)/a return else betai=1.-bt*betacf(b,a,1.-
x)/b Use continued fraction after making the symme- try
transformation. return endif END which utilizes the contin-
ued fraction evaluation routine FUNCTION betacf(a,b,x) IN-
TEGER MAXIT REAL betacf,a,b,x,EPS,FPMIN PARAME-
TER (MAXIT=100,EPS=3.e-7,FPMIN=1.e-30) Used by be-
tai: Eval uates continued fraction for incomplete beta function
by modified Lentzs method (5.2). INTEGER m,m2 REAL

aa,c,d,del,h,qab,qam,qap qab=a+b These qs will be used in
factors that occur in the coe cients (6.4.6). qap=a+1. qam=a-
1. c=1. First step of Lentzs method. d=1.-qab*x/qap
if(abs(d).lt.FPMIN)d=FPMIN d=1./d h=d do 1 1 m=1,MAXIT
m2=2*m aa=m*(b-m)*x/((qam+m2)*(a+m2)) d=1.+aa*d One
step (the even one) of the recurrence. if(abs(d).lt.FPMIN)d=FPMIN
c=1.+aa/c if(abs(c).lt.FPMIN)c=FPMIN d=1./d h=h*d*c aa=-
(a+m)*(qab+m)*x/((a+m2)*(qap+m2)) d=1.+aa*d Next step
of the recurrence (the odd one). if(abs(d).lt.FPMIN)d=FPMIN
c=1.+aa/c if(abs(c).lt.FPMIN)c=FPMIN d=1./d del=d*c h=h*del
if(abs(del-1.).lt.EPS)goto 1 Are we done? enddo 1 1 pause a
or b too big, or MAXIT too small in betacf 1 betacf=h return
END Students Distribution Probability Function Students dis-
tribution, denoted A(t—), is useful in several statistical con-
texts, notably in the test of whether two observed distributions
have the same mean. A(t—) is the probability, for degrees of
freedom, that a certain statistic t (measuring the observed dif-
ference of means) would be smaller than the observed value if
the means were in fact the same. (See Chapter 14 for further
details.) Two means are

222 Chapter 6. Special Functions significantly different if,
e.g., A(t—) ¿ 0.99. In other words, 1 - A(t—) is the signif-
icance level at which the hypothesis that the means are equal
is disproved. The mathematical definition of the function is 2
dx (6.4.7) t - + 1 A(t—)= 1 1+ x2

1 / 2 B(1 -t 2) 2 , Limiting values are A(0—)=0 A(8—
)=1 (6.4.8) A(t—) is related to the incomplete beta function
Ix (a, b) by

A(t—)=1- I 2 , 1 2 (6.4.9) +t 2 So, you can use (6.4.9)
and the above routine betai to evaluate the function. F-
Distribution Probability Function This function occurs in the
statistical test of whether two observed samples have the same

variance. A certain statistic F , essentially the ratio of the
observed dispersion of the first sample to that of the second
one, is calculated. (For further details, see Chapter 14.) The
probability that F would be as large as it is if the first sam-
ples underlying distribution actually has smaller variance than
the secondsis denoted Q(F — 1 , 2), where 1 and 2 are the
number of degrees of freedom in the first and second samples,
respectively. In other words, Q(F — 1 , 2) is the significance
level at which the hypothesis 1 has smaller variance than 2 can
be rejected. A small numerical value implies a very significant
rejection, in turn implying high confidence in the hypothesis
1 has variance greater or equal to 2. Q(F— 1 , 2) has the
limiting values Q(0— 1 , 2)=1 Q(8— 1 , 2)=0 (6.4.10) Its
relation to the incomplete beta function Ix (a, b) as evaluated
by betai above is 2 Q(F — 1 , 2)=I 2 2 (6.4.11) 2 , 1 2 +
1 F Cumulative Binomial Probability Distribution Suppose an
event occurs with probability p per trial. Then the probability
P of its occurring k or more times in n trials is termed a cu-
mulative binomial probability, and is related to the incomplete
beta function Ix (a, b) as follows: n n P = j pj (1 - p)n -j =
Ip(k,n - k +1) (6.4.12) j =k

6.5 Bessel Functions of Integer Order 223 For n larger than
a dozen or so, betai is a much better way to evaluate the sum
in (6.4.12) than would be the straightforward sum with concur-
rent computation of the binomial coefficients. (For n smaller
than a dozen, either method is acceptable.) CITED REFER-
ENCES AND FURTHER READING: Abramowitz, M., and
Stegun, I.A. 1964, Handbook of Mathematical Functions, Ap-
plied Mathe- matics Series, Volume 55 (Washington: National
Bureau of Standards; reprinted 1968 by Dover Publications,
New York), Chapters 6 and 26. Pearson, E., and Johnson,
N. 1968, Tables of the Incomplete Beta Function (Cambridge:

Cam- bridge University Press). 6.5 Bessel Functions of In-
teger Order This section and the next one present practical
algorithms for computing various kinds of Bessel functions of
integer order. In 6.7 we deal with fractional order. In fact,
the more complicated routines for fractional order work fine
for integer order too. For integer order, however, the routines
in this section (and 6.6) are simpler and faster. Their only
drawback is that they are limited by the precision of the un-
derlying rational approximations. For full double precision, it
is best to work with the routines for fractional order in 6.7. For
any real , the Bessel function J (x) can be defined by the series
representation 8 (- 1 4 x2)k J (x)= 1 2 x k!G(+ k +1) (6.5.1)
k=0 The series converges for all x, but it is not computation-
ally very useful for x 1. For not an integer the Bessel function
Y (x) is given by (6.5.2) Y (x)= J (x)cos(p) - J- (x) sin(p)
The right-hand side goes to the correct limiting value Y n (x)
as goes to some integer n, but this is also not computationally
useful. For arguments x¡ , both Bessel functions look qualita-
tively like simple power laws, with the asymptotic forms for 0
¡x 1 2 x

= 0 J (x) 1 G(+1) (6.5.3) Y0 (x) 2 p ln(x) 1 2 x - ¿0 Y
(x) -G() p

6.5 Bessel Functions of Integer Order 223 For n larger than
a dozen or so, betai is a much better way to evaluate the sum
in (6.4.12) than would be the straightforward sum with concur-
rent computation of the binomial coefficients. (For n smaller
than a dozen, either method is acceptable.) CITED REFER-
ENCES AND FURTHER READING: Abramowitz, M., and
Stegun, I.A. 1964, Handbook of Mathematical Functions, Ap-
plied Mathe- matics Series, Volume 55 (Washington: National
Bureau of Standards; reprinted 1968 by Dover Publications,
New York), Chapters 6 and 26. Pearson, E., and Johnson,

N. 1968, Tables of the Incomplete Beta Function (Cambridge:
Cam- bridge University Press). 6.5 Bessel Functions of In-
teger Order This section and the next one present practical
algorithms for computing various kinds of Bessel functions of
integer order. In 6.7 we deal with fractional order. In fact,
the more complicated routines for fractional order work fine
for integer order too. For integer order, however, the routines
in this section (and 6.6) are simpler and faster. Their only
drawback is that they are limited by the precision of the un-
derlying rational approximations. For full double precision, it
is best to work with the routines for fractional order in 6.7. For
any real , the Bessel function J (x) can be defined by the series
representation 8 (- 1 4 x2)k J (x)= 1 2 x k!G(+ k +1) (6.5.1)
k=0 The series converges for all x, but it is not computation-
ally very useful for x 1. For not an integer the Bessel function
Y (x) is given by (6.5.2) Y (x)= J (x)cos(p) - J- (x) sin(p)
The right-hand side goes to the correct limiting value Y n (x)
as goes to some integer n, but this is also not computationally
useful. For arguments x¡ , both Bessel functions look qualita-
tively like simple power laws, with the asymptotic forms for 0
¡x 1 2 x

= 0 J (x) 1 G(+1) (6.5.3) Y0 (x) 2 p ln(x) 1 2 x - ¿0 Y
(x) -G() p

224 Chapter 6. Special Functions 1 J0 J1 J2 J3 .5 0 - .5
Y0 Y1 Y2 - 1 -1.5 - 2 246810 0 x Figure 6.5.1. Bessel functions
J0 (x) through J3 (x) and Y0 (x) through Y2 (x). For x¿
, both Bessel functions look qualitatively like sine or cosine
waves whose amplitude decays as x-1 / 2 . The asymptotic
forms for x are J (x) 2 px cos x - 1 2 p - 1 4 p (6.5.4) Y (x) 2
px sin x - 1 2 p - 1 4 p In the transition region where x , the
typical amplitudes of the Bessel functions are on the order 1 J
() 21 /3 1 /3 0 .4473 32 / 3 G(2 1 /3 3) (6.5.5) 1 Y () - 21

/3 1 /3 -0.7748 31 /6 G(2 1 /3 3) which holds asymptotically
for large . Figure 6.5.1 plots the first few Bessel functions of
each kind. The Bessel functions satisfy the recurrence relations
Jn +1 (x)= 2n x Jn (x) - Jn - 1 (x)(6.5.6) and Yn+ 1 (x)= 2n x
Yn (x) - Yn -1 (x)(6.5.7) As already mentioned in 5.5, only the
second of these (6.5.7) is stable in the direction of increasing n
for x¡n. The reason that (6.5.6) is unstable in the

6.5 Bessel Functions of Integer Order 225 direction of in-
creasing n is simply that it is the same recurrence as (6.5.7):
A small amount of polluting Y n introduced by roundoff er-
ror will quickly come to swamp the desired Jn , according to
equation (6.5.3). A practical strategy for computing the Bessel
functions of integer order divides into two tasks: first, how
to compute J 0 ,J1 ,Y0 , and Y1 , and second, how to use
the recurrence relations stably to find other Js and Y s. We
treat the first task first: For x between zero and some arbi-
trary value (we will use the value 8), approximate J0 (x) and
J1 (x) by rational functions in x. Likewise approximate by ra-
tional functions the regular part of Y0 (x) and Y1 (x),defined
as Y0 (x) - 2 x (6.5.8) p J0 (x)ln(x) and Y1 (x) - 2 p J1
(x)ln(x) - 1 For 8 ¡x¡8, use the approximating forms (n =0, 1)
8 8 Jn (x)= 2 x sin(Xn) (6.5.9) px Pn x cos(Xn) - Qn 8 8
Yn (x)= 2 x cos(Xn) (6.5.10) px Pn x sin(Xn)+Qn where
Xn = x - 2n +1 4 p (6.5.11) and where P0 ,P1 ,Q0 , and Q1
are each polynomials in their arguments, for 0 ¡ 8/x ¡ 1. The
Ps are even polynomials, the Qs odd. Coefficients of the var-
ious rational functions and polynomials are given by Hart [1],
for various levels of desired accuracy. A straightforward im-
plementation is FUNCTION bessj0(x) REAL bessj0,x Returns
the Bessel function J0 (x) for any real x. REAL ax,xx,z DOU-
BLE PRECISION p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4, *
r5,r6,s1,s2,s3,s4,s5,s6,y Well accumulate polynomials in double

precision. SAVE p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,r5,r6,
* s1,s2,s3,s4,s5,s6 DATA p1,p2,p3,p4,p5/1.d0,-.1098628627d-
2,.2734510407d-4, * -.2073370639d-5,.2093887211d-6/, q1,q2,q3,q4,q5/-
.1562499995d-1, * .1430488765d-3,-.6911147651d-5,.7621095161d-
6,-.934945152d-7/ DATA r1,r2,r3,r4,r5,r6/57568490574.d0,-13362590354.d0,651619640.7d0,
* -11214424.18d0,77392.33017d0,-184.9052456d0/, * s1,s2,s3,s4,s5,s6/57568490411.d0,1029532985.d0,
* 9494680.718d0,59272.64853d0,267.8532712d0,1.d0/ if(abs(x).lt.8.)then
Direct rational function fit. y=x**2 bessj0=(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))))
* /(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))) else Fitting func-
tion (6.5.9). ax=abs(x) z=8./ax y=z**2 xx=ax-.785398164
bessj0=sqrt(.636619772/ax)*(cos(xx)*(p1+y*(p2+y*(p3+y*(p4+y

226 Chapter 6. Special Functions * *p5))))-z*sin(xx)*(q1+y*(q2+y*(q3+y*(q4+y*q5)))))
endif return END FUNCTION bessy0(x) REAL bessy0,x C
USES bessj0 Returns the Bessel function Y0 (x) for positive x.
REAL xx,z,bessj0 DOUBLE PRECISION p1,p2,p3,p4,p5,q1, *
q2,q3,q4,q5,r1,r2,r3,r4, * r5,r6,s1,s2,s3,s4,s5,s6,y Wel l accumu-
late polynomials in double precision. SAVE p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,
* r5,r6,s1,s2,s3,s4,s5,s6 DATA p1,p2,p3,p4,p5/1.d0,-.1098628627d-
2,.2734510407d-4, * -.2073370639d-5,.2093887211d-6/, q1,q2,q3,q4,q5/-
.1562499995d-1, * .1430488765d-3,-.6911147651d-5,.7621095161d-
6,-.934945152d-7/ DATA r1,r2,r3,r4,r5,r6/-2957821389.d0,7062834065.d0,-
512359803.6d0, * 10879881.29d0,-86327.92757d0,228.4622733d0/,
* s1,s2,s3,s4,s5,s6/40076544269.d0,745249964.8d0, * 7189466.438d0,47447.26470d0,226.1030244d0,1.d0/
if(x.lt.8.)then Rational function approximation of (6.5.8). y=x**2
bessy0=(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))))/(s1+y*(s2+y
* *(s3+y*(s4+y*(s5+y*s6)))))+.636619772*bessj0(x)*log(x) else
Fitting function (6.5.10). z=8./x y=z**2 xx=x-.785398164
bessy0=sqrt(.636619772/x)*(sin(xx)*(p1+y*(p2+y*(p3+y*(p4+y*
* p5))))+z*cos(xx)*(q1+y*(q2+y*(q3+y*(q4+y*q5))))) endif
return END FUNCTION bessj1(x) REAL bessj1,x Returns the
Bessel function J1 (x) for any real x. REAL ax,xx,z DOU-
BLE PRECISION p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4, *

r5,r6,s1,s2,s3,s4,s5,s6,y Well accumulate polynomials in double
precision. SAVE p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,r5,r6,
* s1,s2,s3,s4,s5,s6 DATA r1,r2,r3,r4,r5,r6/72362614232.d0,-7895059235.d0,242396853.1d0,
* -2972611.439d0,15704.48260d0,-30.16036606d0/, * s1,s2,s3,s4,s5,s6/144725228442.d0,2300535178.d0,
* 18583304.74d0,99447.43394d0,376.9991397d0,1.d0/ DATA p1,p2,p3,p4,p5/1.d0,.183105d-
2,-.3516396496d-4,.2457520174d-5, * -.240337019d-6/, q1,q2,q3,q4,q5/.04687499995d0,-
.2002690873d-3, * .8449199096d-5,-.88228987d-6,.105787412d-
6/ if(abs(x).lt.8.)then Direct rational approximation. y=x**2
bessj1=x*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))) * /(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))
else Fitting function (6.5.9). ax=abs(x) z=8./ax y=z**2
xx=ax-2.356194491

6.5 Bessel Functions of Integer Order 227 bessj1=sqrt(.636619772/ax)*(cos(xx)*(p1+y*(p2+y*(p3+y*(p4+y
* *p5))))-z*sin(xx)*(q1+y*(q2+y*(q3+y*(q4+y*q5))))) * *sign(1.,x)
endif return END FUNCTION bessy1(x) REAL bessy1,x C
USES bessj1 Returns the Bessel function Y1 (x) for positive x.
REAL xx,z,bessj1 DOUBLE PRECISION p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,
* r5,r6,s1,s2,s3,s4,s5,s6,s7,y Wel l accumulate polynomials in
double precision. SAVE p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,
* r5,r6,s1,s2,s3,s4,s5,s6,s7 DATA p1,p2,p3,p4,p5/1.d0,.183105d-
2,-.3516396496d-4,.2457520174d-5, * -.240337019d-6/, q1,q2,q3,q4,q5/.04687499995d0,-
.2002690873d-3, * .8449199096d-5,-.88228987d-6,.105787412d-
6/ DATA r1,r2,r3,r4,r5,r6/-.4900604943d13,.1275274390d13,-
.5153438139d11, * .7349264551d9,-.4237922726d7,.8511937935d4/,
* s1,s2,s3,s4,s5,s6,s7/.2499580570d14,.4244419664d12, * .3733650367d10,.2245904002d8,.1020426050d6,.3549632885d3,1.d0/
if(x.lt.8.)then Rational function approximation of (6.5.8). y=x**2
bessy1=x*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))))/(s1+y*(s2+y*
* (s3+y*(s4+y*(s5+y*(s6+y*s7))))))+.636619772 * *(bessj1(x)*log(x)-
1./x) else Fitting function (6.5.10). z=8./x y=z**2 xx=x-
2.356194491 bessy1=sqrt(.636619772/x)*(sin(xx)*(p1+y*(p2+y*(p3+y*(p4+y
* *p5))))+z*cos(xx)*(q1+y*(q2+y*(q3+y*(q4+y*q5))))) en-
dif return END We now turn to the second task, namely how to
use the recurrence formulas (6.5.6) and (6.5.7) to get the Bessel

functions Jn (x) and Yn (x) for n = 2. The latter of these is
straightforward, since its upward recurrence is always stable:
FUNCTION bessy(n,x) INTEGER n REAL bessy,x C USES
bessy0,bessy1 Returns the Bessel function Yn(x) for positive x
and n = 2. INTEGER j REAL by,bym,byp,tox,bessy0,bessy1
if(n.lt.2)pause bad argument n in bessy tox=2./x by=bessy1(x)
Starting values for the recurrence. bym=bessy0(x) do 1
1 j=1,n-1 Recurrence (6.5.7). byp=j*tox*by-bym bym=by
by=byp enddo 1 1 bessy=by return END

6.6 Modified Bessel Functions of Integer Order 229 bjp=bjp*BIGNI
bessj=bessj*BIGNI sum=sum*BIGNI endif if(jsum.ne.0)sum=sum+bj
Accumulate the sum. jsum=1-jsum Change0to1orviceversa.
if(j.eq.n)bessj=bjp Save the unnormalized answer. enddo 1 2
sum=2.*sum-bj Compute (5.5.16) bessj=bessj/sum and use it
to normalize the answer. endif if(x.lt.0..and.mod(n,2).eq.1)bessj=-
bessj return END CITED REFERENCES AND FURTHER
READING: Abramowitz, M., and Stegun, I.A. 1964, Hand-
book of Mathematical Functions, Applied Mathe- matics Se-
ries, Volume 55 (Washington: National Bureau of Standards;
reprinted 1968 by Dover Publications, New York), Chapter 9.
Hart, J.F., et al. 1968, Computer Approximations (New York:
Wiley), 6.8, p. 141. [1] 6.6 Modified Bessel Functions of Inte-
ger Order The modified Bessel functions In (x) and Kn (x) are
equivalent to the usual Bessel functions Jn and Yn evaluated
for purely imaginary arguments. In detail, the relationship is
In (x)=(-i)n Jn (ix) (6.6.1) Kn (x)= p 2 in +1 [Jn (ix)+iYn
(ix)] The particular choice of prefactor and of the linear combi-
nation of J n and Yn to form Kn are simply choices that make
the functions real-valued for real arguments x. For small ar-
guments x n, both In (x) and Kn (x) become, asymptotically,
simple powers of their argument n n = 0 x In (x) 1 n! 2 (6.6.2)
K0 (x) -ln(x) -n n¿0 x Kn (x) (n - 1)! 2 2 These expressions

are virtually identical to those for Jn (x) and Yn (x) in this
region, except for the factor of -2/p difference between Y n (x)
and Kn (x). In the region

230 Chapter 6. Special Functions I0 K0 K1 K2 I1 I2 I3
0 1 2 3 4 01234 x Figure 6.6.1. Modified Bessel functions I0
(x) through I3 (x), K0 (x) through K2 (x). x n, however,
the modified functions have quite different behavior than the
Bessel functions, v In (x) 1 2px exp(x) (6.6.3) v2px exp(-
x) Kn (x) p The modified functions evidently have expo-
nential rather than sinusoidal be- havior for large arguments
(see Figure 6.6.1). The smoothness of the modified Bessel
functions, once the exponential factor is removed, makes a
simple polynomial approximation of a few terms quite suit-
able for the functions I 0 , I1 , K0 , and K1 . The fol-
lowing routines, based on polynomial coefficients given by
Abramowitz and Stegun [1], evaluate these four functions,
and will provide the basis for upward recursion for n¿1 when
x¿n. FUNCTION bessi0(x) REAL bessi0,x Returns the mod-
ified Bessel functi on I0 (x) for any real x. REAL ax DOU-
BLE PRECISION p1,p2,p3,p4,p5,p6,p7,q1,q2,q3,q4,q5,q6,q7,
* q8,q9,y Accumulate polynomials in double precision. SAVE
p1,p2,p3,p4,p5,p6,p7,q1,q2,q3,q4,q5,q6,q7,q8,q9 DATA p1,p2,p3,p4,p5,p6,p7/1.0d0,3.5156229d0,3.0899424d0,1.2067492d0,
* 0.2659732d0,0.360768d-1,0.45813d-2/ DATA q1,q2,q3,q4,q5,q6,q7,q8,q9/0.39894228d0,0.1328592d-
1, * 0.225319d-2,-0.157565d-2,0.916281d-2,-0.2057706d-1, * 0.2635537d-
1,-0.1647633d-1,0.392377d-2/

6.6 Modified Bessel Functions of Integer Order 231 if
(abs(x).lt.3.75) then y=(x/3.75)**2 bessi0=p1+y*(p2+y*(p3+y*(p4+y*(p5+y*(p6+y*p7)))))
else ax=abs(x) y=3.75/ax bessi0=(exp(ax)/sqrt(ax))*(q1+y*(q2+y*(q3+y*(q4
* +y*(q5+y*(q6+y*(q7+y*(q8+y*q9)))))))) endif return END
FUNCTION bessk0(x) REAL bessk0,x C USES bessi0 Re-
turns the modified Bessel function K0 (x) for positive real x.
REAL bessi0 DOUBLE PRECISION p1,p2,p3,p4,p5,p6,p7,q1,

* q2,q3,q4,q5,q6,q7,y Accumulate polynomials in double preci-
sion. SAVE p1,p2,p3,p4,p5,p6,p7,q1,q2,q3,q4,q5,q6,q7 DATA
p1,p2,p3,p4,p5,p6,p7/-0.57721566d0,0.42278420d0,0.23069756d0,
* 0.3488590d-1,0.262698d-2,0.10750d-3,0.74d-5/ DATA q1,q2,q3,q4,q5,q6,q7/1.25331414d0,-
0.7832358d-1,0.2189568d-1, * -0.1062446d-1,0.587872d-2,-0.251540d-
2,0.53208d-3/ if (x.le.2.0) then Polynomial fit. y=x*x/4.0
bessk0=(-log(x/2.0)*bessi0(x))+(p1+y*(p2+y*(p3+ * y*(p4+y*(p5+y*(p6+y*p7))))))
else y=(2.0/x) bessk0=(exp(-x)/sqrt(x))*(q1+y*(q2+y*(q3+
* y*(q4+y*(q5+y*(q6+y*q7)))))) endif return END FUNC-
TION bessi1(x) REAL bessi1,x Returns the modified Bessel
functi on I1 (x) for any real x. REAL ax DOUBLE PRECI-
SION p1,p2,p3,p4,p5,p6,p7,q1,q2,q3,q4,q5,q6,q7, * q8,q9,y Ac-
cumulate polynomials in double precision. SAVE p1,p2,p3,p4,p5,p6,p7,q1,q2,q3,q4,q5,q6,q7,q8,q9
DATA p1,p2,p3,p4,p5,p6,p7/0.5d0,0.87890594d0,0.51498869d0,
* 0.15084934d0,0.2658733d-1,0.301532d-2,0.32411d-3/ DATA
q1,q2,q3,q4,q5,q6,q7,q8,q9/0.39894228d0,-0.3988024d-1, * -0.362018d-
2,0.163801d-2,-0.1031555d-1,0.2282967d-1, * -0.2895312d-1,0.1787654d-
1,-0.420059d-2/ if (abs(x).lt.3.75) then Polynomial fit. y=(x/3.75)**2
bessi1=x*(p1+y*(p2+y*(p3+y*(p4+y*(p5+y*(p6+y*p7))))))
else ax=abs(x) y=3.75/ax bessi1=(exp(ax)/sqrt(ax))*(q1+y*(q2+y*(q3+y*(q4+
* y*(q5+y*(q6+y*(q7+y*(q8+y*q9)))))))) if(x.lt.0.)bessi1=-
bessi1 endif return END

232 Chapter 6. Special Functions FUNCTION bessk1(x)
REAL bessk1,x C USES bessi1 Returns the modified Bessel
function K1 (x) for positive real x. REAL bessi1 DOUBLE
PRECISION p1,p2,p3,p4,p5,p6,p7,q1, * q2,q3,q4,q5,q6,q7,y
Accumulate polynomials in double precision. SAVE p1,p2,p3,p4,p5,p6,p7,q1,q2,q3,q4,q5,q6,q7
DATA p1,p2,p3,p4,p5,p6,p7/1.0d0,0.15443144d0,-0.67278579d0,
* -0.18156897d0,-0.1919402d-1,-0.110404d-2,-0.4686d-4/ DATA
q1,q2,q3,q4,q5,q6,q7/1.25331414d0,0.23498619d0,-0.3655620d-1,
* 0.1504268d-1,-0.780353d-2,0.325614d-2,-0.68245d-3/ if (x.le.2.0)
then Po lynomial fit. y=x*x/4.0 bessk1=(log(x/2.0)*bessi1(x))+(1.0/x)*(p1+y*(p2+

* y*(p3+y*(p4+y*(p5+y*(p6+y*p7)))))) else y=2.0/x bessk1=(exp(-
x)/sqrt(x))*(q1+y*(q2+y*(q3+ * y*(q4+y*(q5+y*(q6+y*q7))))))
endif return END The recurrence relation for In (x) and Kn (x)
is the same as that for Jn (x) and Yn (x) provided that ix is
substituted for x. This has the effect of changing a sign in
the relation, In +1 (x)=- 2n x In (x)+In - 1 (x) (6.6.4) Kn+
1 (x)=+ 2n x Kn (x)+Kn -1 (x) These relations are always
unstable for upward recurrence. For K n , itself growing, this
presents no problem. For In , however, the strategy of down-
ward recursion is therefore required once again, and the start-
ing point for the recursion may be chosen in the same manner
as for the routine bessj. The only fundamental difference is
that the normalization formula for I n (x) has an alternating
minus sign in successive terms, which again arises from the sub-
stitution of ix for x in the formula used previously for Jn 1=I0
(x) - 2I2 (x)+2I4 (x) - 2I6 (x)+ (6.6.5) In fact, we prefer simply
to normalize with a call to bessi0. With this simple modifica-
tion, the recursion routines bessj and bessy become the new
routines bessi and bessk: FUNCTION bessk(n,x) INTEGER
n REAL bessk,x C USES bessk0,bessk1 Returns the modified
Bessel function Kn(x) for positive x and n = 2. INTEGER j
REAL bk,bkm,bkp,tox,bessk0,bessk1 if (n.lt.2) pause bad ar-
gument n in bessk tox=2.0/x

6.6 Modified Bessel Functions of Integer Order 233 bkm=bessk0(x)
Upward recurrence for all x... bk=bessk1(x) do 1 1 j=1,n-
1 ...and here it is. bkp=bkm+j*tox*bk bkm=bk bk=bkp
enddo 1 1 bessk=bk return END FUNCTION bessi(n,x) IN-
TEGER n,IACC REAL bessi,x,BIGNO,BIGNI PARAMETER
(IACC=40,BIGNO=1.0e10,BIGNI=1.0e-10) C USES bessi0
Returns the modified Bessel function In (x) for any real x and
n = 2. INTEGER j,m REAL bi,bim,bip,tox,bessi0 if (n.lt.2)
pause bad argument n in bessi if (x.eq.0.) then bessi=0. else

tox=2.0/abs(x) bip=0.0 bi=1.0 bessi=0. m=2*((n+int(sqrt(float(IACC*n)))))
Downward recurrence from even m. do 1 1 j=m,1,-1 Make
IACC larger to increase accuracy. bim=bip+float(j)*tox*bi
The downward recurrence. bip=bi bi=bim if (abs(bi).gt.BIGNO)
then Renormalize to prevent over ows. bessi=bessi*BIGNI
bi=bi*BIGNI bip=bip*BIGNI endif if (j.eq.n) bessi=bip enddo
1 1 bessi=bessi*bessi0(x)/bi Normalize with bessi0. if (x.lt.0..and.mod(n,2).eq.1)
bessi=-bessi endif return END CITED REFERENCES AND
FURTHER READING: Abramowitz, M., and Stegun, I.A.
1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of
Standards; reprinted 1968 by Dover Publications, New York),
9.8. [1] Carrier, G.F., Krook, M. and Pearson, C.E. 1966, Func-
tions of a Complex Variable (New York: McGraw-Hill), pp.
220ff.

234 Chapter 6. Special Functions 6.7 Bessel Functions of
Fractional Order, Airy Functions, Spherical Bessel Functions
Many algorithms have been proposed for computing Bessel
functions of fractional order numerically. Most of them are,
in fact, not very good in practice. The routines given here
are rather complicated, but they can be recommended whole-
heartedly. Ordinary Bessel Functions The basic idea is Steeds
method, which was originally developed [1] for Coulomb wave
functions. The method calculates J , J , Y , and Y simulta-
neously, and so involves four relations among these functions.
Three of the relations come from two continued fractions, one
of which is complex. The fourth is provided by the Wronskian
relation W = J Y - Y J = 2 px (6.7.1) The first continued
fraction, CF1, is defined by = f = J J J x - J + 1 (6.7.2) 1
= x - 1 2(+1)/x - 2(+2)/x - You can easily derive it from
the three-term recurrence relation for Bessel functions: Start
with equation (6.5.6) and use equation (5.5.18). Forward eval-

uation of the continued fraction by one of the methods of 5.2
is essentially equivalent to backward recurrence of the recur-
rence relation. The rate of convergence of CF1 is determined
by the position of the turning point xt p = (+1) , beyond
which the Bessel functions become oscillatory. If x ¡ xt p ,
convergence is very rapid. If x ¿ xt p, then each iteration of
the continued fraction effectively increases by one until x ¡ xt
p ; thereafter rapid convergence sets in. Thus the number of
iterations of CF1 is of order x for large x. In the routine bessjy
we set the maximum allowed number of iterations to 10,000.
For larger x, you can use the usual asymptotic expressions for
Bessel functions. One can show that the sign of J is the same
as the sign of the denominator of CF1 once it has converged.
The complex continued fraction CF2 is defined by (1/2)2 - 2
(3/2)2 - 2 = - 1 p + iq = J + iY 2x + i + i x 2(x + i)+ 2(x
+2i)+ (6.7.3) J + iY (We sketch the derivation of CF2 in the
analogous case of modified Bessel functions in the next subsec-
tion.) This continued fraction converges rapidly for x ¿ xt p
, while convergence fails as x 0. We have to adopt a special
method for small x, which we describe below. For x not too
small, we can ensure that x ¿ xt p by a stable recurrence of
J and J downwards to a value = ¡ x, thus yielding the ratio
f at this lower value of . This is the stable direction for the
recurrence relation. The initial values for the recurrence are
J = arbitrary,J = f J , (6.7.4) with the sign of the arbitrary
initial value of J chosen to be the sign of the denominator of
CF1. Choosing the initial value of J very small minimizes the
possibility of over ow during the recurrence. The recurrence
relations are J - 1 = xJ + J (6.7.5) J - 1 = - 1 x J - 1 - J

6.7 Bessel Functions of Fractional Order 235 Once CF2 has
been evaluated at = , then with the Wronskian (6.7.1) we have
enough relations to solve for all four quantities. The formulas

are simplified by introducing the quantity (6.7.6) = p - f q Then
1/ 2 (6.7.7) J = W q + (p - f) (6.7.8) J = f J (6.7.9) Y = J
(6.7.10) Y = Y p + q

The sign of J in (6.7.7) is chosen to be the same as the sign
of the initial J in (6.7.4). Once all four functions have been
determined at the value = , we can find them at the original
value of .ForJ and J , simply scale the values in (6.7.4) by the
ratio of (6.7.7) to the value found after applying the recurrence
(6.7.5). The quantities Y and Y can be found by starting with
the values in (6.7.9) and (6.7.10) and using the stable upwards
recurrence Y +1 = 2 x Y - Y -1 (6.7.11) together with the
relation (6.7.12) Y = xY - Y +1 Now turn to the case of small
x, when CF2 is not suitable. Temme [2] has given a good
method of evaluating Y and Y +1 , and hence Y from (6.7.12),
by series expansions that accurately handle the singularity as
x 0. The expansions work only for — —=1/2, and so now the
recurrence (6.7.5) is used to evaluate f at a value = in this
interval. Then one calculates J from (6.7.13) J = W Y - Y
f and J from (6.7.8). The values at the original value of are
determined by scaling as before, and the Y s are recurred up
as before. Temmes series are 8 8 Y = - ck gk Y + 1 = - 2 ck
hk (6.7.14) x k = 0 k = 0 Here (6.7.15) ck = (-x2 /4)k k! while
the coefficients gk and hk are defined in terms of quantities pk
, qk , and fk that can be found by recursion: gk = fk + 2 sin2
p 2 qk hk = -kgk + pk (6.7.16) pk = pk - 1 k - qk = qk - 1 k
+ fk = kfk -1 + pk -1 + qk - 1 k2 - 2

236 Chapter 6. Special Functions The initial values for the
recurrences are - G(1 +) x p0 = 1 p 2 G(1 -) x (6.7.17) q0
= 1 p 2 p f0 = 2 p s ln 2 sin p cosh sG1 ()+sinhs x G2 ()
with s = ln 2 x 1 (6.7.18) G1 ()= 1 2 G(1 -) - 1 G(1 +) 1
G2 ()= 1 2 G(1 -) + 1 G(1 +) The whole point of writing
the formulas in this way is that the potential problems as 0

can be controlled by evaluating p/sin p, sinh s/s, and G1 care-
fully. In particular, Temme gives Chebyshev expansions for G1
() and G2 (). We have rearranged his expansion for G1 to
be explicitly an even series in so that we can use our routine
chebev as explained in 5.8. The routine assumes = 0. For
negative you can use the re ection formulas J- =cos p J - sin
p Y (6.7.19) Y- =sin p J +cos p Y The routine also assumes
x¿0.Forx¡0 the functions are in general complex, but expressible
in terms of functions with x¿0.Forx =0, Y is singular. Inter-
nal arithmetic in the routine is carried out in double precision.
To maintain portability, complex arithmetic has been recoded
with real variables. SUBROUTINE bessjy(x,xnu,rj,ry,rjp,ryp)
INTEGER MAXIT REAL rj,rjp,ry,ryp,x,xnu,XMIN DOU-
BLE PRECISION EPS,FPMIN,PI PARAMETER (EPS=1.e-
10,FPMIN=1.e-30,MAXIT=10000,XMIN=2., * PI=3.141592653589793d0)
C USES beschb Returns the Bessel functions rj = J , ry =
Y and their derivatives rjp = J , ryp = Y , for positive x
and for xnu = = 0. The relative accuracy is within one
or two significant digi ts of EPS, except near a zero of one
of the functi ons, where EPS controls its absolute accuracy.
FPMIN is a number close to the machines smallest oating-
point number. All internal arithmetic i s in double precision.
To convert the entire routine to double precision, change the
REAL declaration above and decrease EPS to 10- 1 6 . Also
convert the subroutine beschb. INTEGER i,isign,l,nl DOU-
BLE PRECISION a,b,br,bi,c,cr,ci,d,del,del1,den,di,dlr,dli, *
dr,e,f,fact,fact2,fact3,ff,gam,gam1,gam2,gammi,gampl,h, * p,pimu,pimu2,q,r,rjl,rjl1,rjmu,rjp1,rjpl,rjtemp,ry1,
* rymu,rymup,rytemp,sum,sum1,temp,w,x2,xi,xi2,xmu,xmu2 if(x.le.0..or.xnu.lt.0.)
pause bad arguments in bessjy if(x.lt.XMIN)then nl is the num-
ber of downward recurrences of the Js and upward recurrences
of Y s. xmu lies between -1/2 and 1/2 for x ¡ XMIN, while
it is chosen so that x is greater than the turning point for x

= XMIN. nl=int(xnu+.5d0) else nl=max(0,int(xnu-x+1.5d0))
endif xmu=xnu-nl xmu2=xmu*xmu xi=1.d0/x xi2=2.d0*xi
w=xi2/PI The Wronskian.

6.7 Bessel Functions of Fractional Order 237 isign=1 Eval-
uate CF1 by modified Lentzs method (5.2). isign keeps track of
sign changes in the denominator. h=xnu*xi if(h.lt.FPMIN)h=FPMIN
b=xi2*xnu d=0.d0 c=h do 1 1 i=1,MAXIT b=b+xi2 d=b-d
if(abs(d).lt.FPMIN)d=FPMIN c=b-1.d0/c if(abs(c).lt.FPMIN)c=FPMIN
d=1.d0/d del=c*d h=del*h if(d.lt.0.d0)isign=-isign if(abs(del-
1.d0).lt.EPS)goto 1 enddo 1 1 pause x too large in bessjy;
try asymptotic expansion 1 continue rjl=isign*FPMIN Ini-
tialize J and J for downward recurrence. rjpl=h*rjl rjl1=rjl
Store values for later rescaling. rjp1=rjpl fact=xnu*xi do 1 2
l=nl,1,-1 rjtemp=fact*rjl+rjpl fact=fact-xi rjpl=fact*rjtemp-
rjl rjl=rjtemp enddo 1 2 if(rjl.eq.0.d0)rjl=EPS f=rjpl/rjl Now
have unnormalized J and J . if(x.lt.XMIN) then Use series.
x2=.5d0*x pimu=PI*xmu if(abs(pimu).lt.EPS)then fact=1.d0
else fact=pimu/sin(pimu) endif d=-log(x2) e=xmu*d if(abs(e).lt.EPS)then
fact2=1.d0 else fact2=sinh(e)/e endif call beschb(xmu,gam1,gam2,gampl,gammi)
Chebyshev evaluation of G1 and G2 . ff=2.d0/PI*fact*(gam1*cosh(e)+gam2*fact2*d)
f0 . e=exp(e) p=e/(gampl*PI) p0 . q=1.d0/(e*PI*gammi)
q0 . pimu2=0.5d0*pimu if(abs(pimu2).lt.EPS)then fact3=1.d0
else fact3=sin(pimu2)/pimu2 endif r=PI*pimu2*fact3*fact3
c=1.d0 d=-x2*x2 sum=ff+r*q sum1=p

238 Chapter 6. Special Functions do 1 3 i=1,MAXIT
ff=(i*ff+p+q)/(i*i-xmu2) c=c*d/i p=p/(i-xmu) q=q/(i+xmu)
del=c*(ff+r*q) sum=sum+del del1=c*p-i*del sum1=sum1+del1
if(abs(del).lt.(1.d0+abs(sum))*EPS)goto 2 enddo 1 3 pause
bessy series failed to converge 2 continue rymu=-sum ry1=-
sum1*xi2 rymup=xmu*xi*rymu-ry1 rjmu=w/(rymup-f*rymu)
Equation (6.7.13). else Evaluate CF2 by modified Lentzs
method (5.2). a=.25d0-xmu2 p=-.5d0*xi q=1.d0 br=2.d0*x

bi=2.d0 fact=a*xi/(p*p+q*q) cr=br+q*fact ci=bi+p*fact den=br*br+bi*bi
dr=br/den di=-bi/den dlr=cr*dr-ci*di dli=cr*di+ci*dr temp=p*dlr-
q*dli q=p*dli+q*dlr p=temp do 1 4 i=2,MAXIT a=a+2*(i-1)
bi=bi+2.d0 dr=a*dr+br di=a*di+bi if(abs(dr)+abs(di).lt.FPMIN)dr=FPMIN
fact=a/(cr*cr+ci*ci) cr=br+cr*fact ci=bi-ci*fact if(abs(cr)+abs(ci).lt.FPMIN)cr=FPMIN
den=dr*dr+di*di dr=dr/den di=-di/den dlr=cr*dr-ci*di dli=cr*di+ci*dr
temp=p*dlr-q*dli q=p*dli+q*dlr p=temp if(abs(dlr-1.d0)+abs(dli).lt.EPS)goto
3 enddo 1 4 pause cf2 failed in bessjy 3 continue gam=(p-
f)/q Equations (6.7.6) (6.7.10). rjmu=sqrt(w/((p-f)*gam+q))
rjmu=sign(rjmu,rjl) rymu=rjmu*gam rymup=rymu*(p+q/gam)
ry1=xmu*xi*rymu-rymup endif fact=rjmu/rjl

246 Chapter 6. Special Functions 6.8 Spherical Harmonics
Spherical harmonics occur in a large variety of physical prob-
lems, for ex- ample, whenever a wave equation, or Laplaces
equation, is solved by separa- tion of variables in spherical co-
ordinates. The spherical harmonic Y lm (,f), -l = m = l, is a
function of the two coordinates , f on the surface of a sphere.
The spherical harmonics are orthogonal for different l and m,
and they are normalized so that their integrated square over
the sphere is unity: 2 p d(cos)Yl m *(,f)Ylm (,f)=dl l dm
m (6.8.1) df 1 0 - 1 Here asterisk denotes complex conjugation.
Mathematically, the spherical harmonics are related to associ-
ated Legendre polynomials by the equation (l - m)! (l + m)!
P m Yl m(, f)= 2l +1 l (cos)ei mf (6.8.2) 4p By using the
relation Yl, -m(, f)=(-1)m Ylm *(,f)(6.8.3) we can always
relate a spherical harmonic to an associated Legendre polyno-
mial with m = 0. With x = cos , these are defined in terms
of the ordinary Legendre polynomials (cf. 4.5 and 5.5) by P
m l (x)=(-1)m(1 - x2)m/2 dm dxm Pl (x)(6.8.4) The first few
associated Legendre polynomials, and their corresponding nor-
malized spherical harmonics, are P 0 0 (x)= 1 Y0 0 = 1 4 p P 1
1 (x)= - (1 - x2)1 / 2 Y1 1 = - 3 8 p sin eif P 0 4 p cos 1 (x)=

xY1 0 = 3 1 5 P 2 2 (x)= 3(1- x2) Y2 2 = 1 4 2 p sin2 e2 i f P
1 2 (x)=-3(1- x2)1 / 2 xY2 1 = - 1 5 8 p sin cos ei f P 0 2 (x)=
1 2 cos2 - 1 2) 2 (3x2 - 1) Y2 0 = 5 4 p (3 (6.8.5) There are
many bad ways to evaluate associated Legendre polynomials
numer- ically. For example, there are explicit expressions, such
as 1 - x P m l (x)= (-1)m (l + m)! 1!(m +1) 2 2mm!(l - m)! (1
- x2)m/2 1 - (l - m)(m + l +1) 2 1 - x + (l - m)(l - m - 1)(m
+ l +1)(m + l +2) - 2!(m +1)(m +2) 2 (6.8.6)

247 6.8 Spherical Har monics where the polynomial con-
tinues up through the term in (1 - x) l -m. (See [1] for this
and related formulas.) This is not a satisfactory method be-
cause evaluation of the polynomial involves delicate cancella-
tions between successive terms, which alternate in sign. For
large l, the individual terms in the polynomial become very
much larger than their sum, and all accuracy is lost. In prac-
tice, (6.8.6) can be used only in single precision (32-bit) for
l up to 6 or 8, and in double precision (64-bit) for l up to
15 or 18, depending on the precision required for the answer.
A more robust computational procedure is therefore desirable,
as follows: The associated Legendre functions satisfy numer-
ous recurrence relations, tab- ulated in [1-2]. These are recur-
rences on l alone, on m alone, and on both l and m simultane-
ously. Most of the recurrences involving m are unstable, and
so dangerous for numerical work. The following recurrence on
l is, however, stable (compare 5.5.1): (l - m)P m l- 2 (6.8.7)
l = x(2l - 1)P m l -1 - (l + m - 1)Pm It is useful because
there is a closed-form expression for the starting value, Pm m
=(-1)m(2m - 1)!!(1 - x2)m/2 (6.8.8) (The notation n!! de-
notes the product of all odd integers less than or equal to n.)
Using (6.8.7) with l = m +1, and setting P m m -1 =0, we
find P m m (6.8.9) m+1 = x(2m +1)Pm Equations (6.8.8)
and (6.8.9) provide the two starting values required for (6.8.7)

for general l. The function that implements this is FUNC-
TION plgndr(l,m,x) INTEGER l,m REAL plgndr,x Computes
the associated Legendre polynomial Pm l (x).Herem and l are
integers satisfying 0 = m = l, while x lies i n the range -1
= x = 1. INTEGER i,ll REAL fact,pll,pmm,pmmp1,somx2
if(m.lt.0.or.m.gt.l.or.abs(x).gt.1.)pause bad arguments in plgndr
pmm=1. Compute Pm m . if(m.gt.0) then somx2=sqrt((1.-
x)*(1.+x)) fact=1. do 1 1 i=1,m pmm=-pmm*fact*somx2
fact=fact+2. enddo 1 1 endif if(l.eq.m) then plgndr=pmm else
pmmp1=x*(2*m+1)*pmm Compute Pm m+ 1 . if(l.eq.m+1)
then plgndr=pmmp1 else Compute P m l , l¿m+1. do 1 2
ll=m+2,l

248 Chapter 6. Special Functions pll=(x*(2*ll-1)*pmmp1-
(ll+m-1)*pmm)/(ll-m) pmm=pmmp1 pmmp1=pll enddo 1 2
plgndr=pll endif endif return END CITED REFERENCES
AND FURTHER READING: Magnus, W., and Oberhet-
tinger, F. 1949, Formulas and Theorems for the Functions of
Mathe- matical Physics (New York: Chelsea), pp. 54ff. [1]
Abramowitz, M., and Stegun, I.A. 1964, Handbook of Math-
ematical Functions, Applied Mathe- matics Series, Volume 55
(Washington: National Bureau of Standards; reprinted 1968
by Dover Publications, New York), Chapter 8. [2] 6.9 Fresnel
Integrals, Cosine and Sine Integrals Fresnel Integrals The two
Fresnel integrals are defined by cos p sin p C(x)= x 2 t2 dt
(6.9.1) 2 t2 dt, S(x)= x 0 0 The most convenient way of eval-
uating these functions to arbitrary precision is to use power
series for small x and a continued fraction for large x. The
series are 2 x5 4 x9 C(x)=x - p 2 5 2! + p 2 9 4! - (6.9.2) 3
x7 5 x1 1 x3 S(x)= p 2 3 1! - p 2 7 3! + p 2 11 5! - There
is a complex continued fraction that yields both S(x) and C(x)
simul- taneously: vp C(x)+iS(x)= 1+i 2 erf z, z = 2 (1 - i)x
(6.9.3) where 1 1/2 1 3/2 2 vp ez 2 erfc z = 1 z + z + z + z +

z + (6.9.4) 1 1 2 3 4 = 2z vp 2z2 +1- 2 z2 +5- 2z 2 +9-
248 Chapter 6. Special Functions pll=(x*(2*ll-1)*pmmp1-

(ll+m-1)*pmm)/(ll-m) pmm=pmmp1 pmmp1=pll enddo 1 2
plgndr=pll endif endif return END CITED REFERENCES
AND FURTHER READING: Magnus, W., and Oberhet-
tinger, F. 1949, Formulas and Theorems for the Functions of
Mathe- matical Physics (New York: Chelsea), pp. 54ff. [1]
Abramowitz, M., and Stegun, I.A. 1964, Handbook of Math-
ematical Functions, Applied Mathe- matics Series, Volume 55
(Washington: National Bureau of Standards; reprinted 1968
by Dover Publications, New York), Chapter 8. [2] 6.9 Fresnel
Integrals, Cosine and Sine Integrals Fresnel Integrals The two
Fresnel integrals are defined by cos p sin p C(x)= x 2 t2 dt
(6.9.1) 2 t2 dt, S(x)= x 0 0 The most convenient way of eval-
uating these functions to arbitrary precision is to use power
series for small x and a continued fraction for large x. The
series are 2 x5 4 x9 C(x)=x - p 2 5 2! + p 2 9 4! - (6.9.2) 3
x7 5 x1 1 x3 S(x)= p 2 3 1! - p 2 7 3! + p 2 11 5! - There
is a complex continued fraction that yields both S(x) and C(x)
simul- taneously: vp C(x)+iS(x)= 1+i 2 erf z, z = 2 (1 - i)x
(6.9.3) where 1 1/2 1 3/2 2 vp ez 2 erfc z = 1 z + z + z + z +
z + (6.9.4) 1 1 2 3 4 = 2z vp 2z2 +1- 2 z2 +5- 2z 2 +9-

6.9 Fresnel Integrals, Cosine and Sine Integrals 249 In the
last line we have converted the standard form of the continued
fraction to its even form (see 5.2), which converges twice as fast.
We must be careful not to evaluate the alternating series (6.9.2)
at too large a value of x; inspection of the terms shows that x
=1.5 is a good point to switch over to the continued fraction.
Note that for large x C(x) 1 2 + 1 px sin p 2 - 1 px cos p 2 x2
,S(x) 1 2 x2 (6.9.5) Thus the precision of the routine frenel
may be limited by the precision of the library routines for sine
and cosine for large x. SUBROUTINE frenel(x,s,c) INTEGER

MAXIT REAL c,s,x,EPS,FPMIN,PI,PIBY2,XMIN PARAME-
TER (EPS=6.e-8,MAXIT=100,FPMIN=1.e-30,XMIN=1.5, *
PI=3.1415927,PIBY2=1.5707963) Computes the Fresnel inte-
grals S(x) and C(x) for all real x. Parameters: EPS is the
relative error; MAXIT is the maximum number of iterations
allowed; FPMIN is a number near the smallest representable
oating-point number; XMIN is the dividing line between using
the series and continued fraction; PI = p; PIBY2 = p/2. INTE-
GER k,n REAL a,absc,ax,fact,pix2,sign,sum,sumc,sums,term,test
COMPLEX b,cc,d,h,del,cs LOGICAL odd absc(h)=abs(real(h))+abs(aimag(h))
Statement function. ax=abs(x) if(ax.lt.sqrt(FPMIN))then
Special case: avoid failure of convergence test because of
under ow. s=0. c=ax else if(ax.le.XMIN)then Evaluate
both series simultaneously. sum=0. sums=0. sumc=ax
sign=1. fact=PIBY2*ax*ax odd=.true. term=ax n=3 do
1 1 k=1,MAXIT term=term*fact/k sum=sum+sign*term/n
test=abs(sum)*EPS if(odd)then sign=-sign sums=sum sum=sumc
else sumc=sum sum=sums endif if(term.lt.test)goto 1 odd=.not.odd
n=n+2 enddo 1 1 pause series failed in frenel 1 s=sums c=sumc
else Evaluate continued fraction by modified Lentzs method
(5.2). pix2=PI*ax*ax b=cmplx(1.,-pix2)

250 Chapter 6. Special Functions cc=1./FPMIN d=1./b
h=d n=-1 do 1 2 k=2,MAXIT n=n+2 a=-n*(n+1) b=b+4.
d=1./(a*d+b) Denominators cannot be zero. cc=b+a/cc
del=cc*d h=h*del if(absc(del-1.).lt.EPS)goto 2 enddo 1 2
pause cf failed in frenel 2 h=h*cmplx(ax,-ax) cs=cmplx(.5,.5)*(1.-
cmplx(cos(.5*pix2),sin(.5*pix2))*h) c=real(cs) s=aimag(cs) en-
dif if(x.lt.0.)then Use antisymmetry. c=-c s=-s endif return
END Cosine and Sine Integrals The cosine and sine integrals
are defined by cos t - 1 Ci(x)= +lnx + x t dt (6.9.6) 0 sin t
Si(x)= x t dt 0 Here 0.5772... is Eulers constant. We only
need a way to calculate the functions for x¿0, because Si(-x)=-

Si(x), Ci(-x)=Ci(x) - ip (6.9.7) Once again we can evaluate
these functions by a judicious combination of power series and
complex continued fraction. The series are Si(x)=x - x3 5 5!
- 3 3! + x5 (6.9.8) Ci(x)= +lnx + - x2 4 4! - 2 2! + x4
The continued fraction for the exponential integral E1 (ix) is
E1 (ix)=- Ci(x)+i[Si(x) - p/2] 1 1 2 2 = e-i x 1 (6.9.9) ix + 1+
ix + 1+ ix + 12 22 = e-i x 1 1+ix - 3+ix - 5+ix -

6.9 Fresnel Integrals, Cosine and Sine Integrals 251 The
even form of the continued fraction is given in the last line and
converges twice as fast for about the same amount of computa-
tion. A good crossover point from the alternating series to the
continued fraction is x =2in this case. As for the Fresnel inte-
grals, for large x the precision may be limited by the precision of
the sine and cosine routines. SUBROUTINE cisi(x,ci,si) INTE-
GER MAXIT REAL ci,si,x,EPS,EULER,PIBY2,FPMIN,TMIN
PARAMETER (EPS=6.e-8,EULER=.57721566,MAXIT=100,PIBY2=1.5707963,
* FPMIN=1.e-30,TMIN=2.) Computes the cosi ne and sine
integrals Ci(x) and Si(x). Ci(0) is returned as a large
negative number and no error message is generated. For
x¡0 the routine returns Ci(-x) and you must supply the -
ip yourself. Parameters: EPS is the relative error, or ab-
solute error near a zero of Ci(x); EULER = ; MAXIT
is the maximum number of iterations allowed; PIBY2 =
p/2; FPMIN is a number near the smallest representable
oating-point number; TMIN is the dividing line between
usi ng the series and continued fraction. INTEGER i,k
REAL a,err,fact,sign,sum,sumc,sums,t,term,absc COMPLEX
h,b,c,d,del LOGICAL odd absc(h)=abs(real(h))+abs(aimag(h))
Statement function. t=abs(x) if(t.eq.0.)then Special case.
si=0. ci=-1./FPMIN return endif if(t.gt.TMIN)then Eval-
uate continued fraction by modified Lentzs method (5.2).
b=cmplx(1.,t) c=1./FPMIN d=1./b h=d do 1 1 i=2,MAXIT

a=-(i-1)**2 b=b+2. d=1./(a*d+b) Denominators cannot be
zero. c=b+a/c del=c*d h=h*del if(absc(del-1.).lt.EPS)goto 1
enddo 1 1 pause cf failed in cisi 1 continue h=cmplx(cos(t),-
sin(t))*h ci=-real(h) si=PIBY2+aimag(h) else Evaluate both
series simultaneously. if(t.lt.sqrt(FPMIN))then Special case:
avoid failure of convergence test because of under ow. sumc=0.
sums=t else sum=0. sums=0. sumc=0. sign=1. fact=1.
odd=.true. do 1 2 k=1,MAXIT fact=fact*t/k term=fact/k

252 Chapter 6. Special Functions sum=sum+sign*term
err=term/abs(sum) if(odd)then sign=-sign sums=sum sum=sumc
else sumc=sum sum=sums endif if(err.lt.EPS)goto 2 odd=.not.odd
enddo 1 2 pause maxits exceeded in cisi endif 2 si=sums
ci=sumc+log(t)+EULER endif if(x.lt.0.)si=-si return END
CITED REFERENCES AND FURTHER READING: Stegun,
I.A., and Zucker, R. 1976, Journal of Research of the National
Bureau of Standards, vol. 80B, pp. 291311; 1981, op. cit.,
vol. 86, pp. 661686. Abramowitz, M., and Stegun, I.A. 1964,
Handbook of Mathematical Functions, Applied Mathe- matics
Series, Volume 55 (Washington: National Bureau of Standards;
reprinted 1968 by Dover Publications, New York), Chapters 5
and 7. 6.10 Dawsons Integral Dawsons Integral F (x) is defined
by x et2 dt (6.10.1) F (x)=e-x 2 0 The function can also be re-
lated to the complex error function by F(z)= ivp 2 e- z 2 [1 -
erfc(-iz)] . (6.10.2) A remarkable approximation for F (z), due
to Rybicki [1],is 1 F (z) = lim e-(z -n h)2 vp n od d n (6.10.3)
h 0 What makes equation (6.10.3) unusual is that its accuracy
increases exponentially as h gets small, so that quite moderate
values of h (and correspondingly quite rapid convergence of the
series) give very accurate approximations.

252 Chapter 6. Special Functions sum=sum+sign*term
err=term/abs(sum) if(odd)then sign=-sign sums=sum sum=sumc
else sumc=sum sum=sums endif if(err.lt.EPS)goto 2 odd=.not.odd

enddo 1 2 pause maxits exceeded in cisi endif 2 si=sums
ci=sumc+log(t)+EULER endif if(x.lt.0.)si=-si return END
CITED REFERENCES AND FURTHER READING: Stegun,
I.A., and Zucker, R. 1976, Journal of Research of the National
Bureau of Standards, vol. 80B, pp. 291311; 1981, op. cit.,
vol. 86, pp. 661686. Abramowitz, M., and Stegun, I.A. 1964,
Handbook of Mathematical Functions, Applied Mathe- matics
Series, Volume 55 (Washington: National Bureau of Standards;
reprinted 1968 by Dover Publications, New York), Chapters 5
and 7. 6.10 Dawsons Integral Dawsons Integral F (x) is defined
by x et2 dt (6.10.1) F (x)=e-x 2 0 The function can also be re-
lated to the complex error function by F(z)= ivp 2 e- z 2 [1 -
erfc(-iz)] . (6.10.2) A remarkable approximation for F (z), due
to Rybicki [1],is 1 F (z) = lim e-(z -n h)2 vp n od d n (6.10.3)
h 0 What makes equation (6.10.3) unusual is that its accuracy
increases exponentially as h gets small, so that quite moderate
values of h (and correspondingly quite rapid convergence of the
series) give very accurate approximations.

253 6.10 Dawsons Integral We will discuss the theory that
leads to equation (6.10.3) later, in 13.11, as an interesting appli-
cation of Fourier methods. Here we simply implement a routine
for real values of x based on the formula. It is first convenient
to shift the summation index to center it approximately on the
maximum of the exponential term. Define n 0 to be the even
integer nearest to x/h, and x0 = n0 h, x = x - x0 , and n = n
- n0 , so that N F (x) 1 vp e- (x -n h)2 , (6.10.4) n + n0 n =-
N n o dd where the approximate equality is accurate when h is
sufficiently small and N is sufficiently large. The computation
of this formula can be greatly speeded up if we note that e-(x
-n h)2 = e-x 2 e-(n h)2 e2 x h n . (6.10.5) The first factor
is computed once, the second is an array of constants to be
stored, and the third can be computed recursively, so that only

two exponentials need be evaluated. Advantage is also taken of
the symmetry of the coefficients e -(n h) 2 by breaking the sum-
mation up into positive and negative values of n separately. In
the following routine, the choices h =0.4 and N =11are made.
Because of the symmetry of the summations and the restriction
to odd values of n, the limits on the do loops are 1 to 6. The
accuracy of the result in this REAL version is about 2 10- 7 .
In order to maintain relative accuracy near x =0, where F (x)
vanishes, the program branches to the evaluation of the power
series [2] for F (x), for —x— ¡ 0.2. FUNCTION dawson(x) IN-
TEGER NMAX REAL dawson,x,H,A1,A2,A3 PARAMETER
(NMAX=6,H=0.4,A1=2./3.,A2=0.4,A3=2./7.) Returns Daw-
sons integral F (x)=exp(-x2) x 0 exp(t2)dt for any real x.
INTEGER i,init,n0 REAL d1,d2,e1,e2,sum,x2,xp,xx,c(NMAX)
SAVE init,c DATA init/0/ Flag is 0 if we need to initialize,
else 1. if(init.eq.0)then init=1 do 1 1 i=1,NMAX c(i)=exp(-
((2.*float(i)-1.)*H)**2) enddo 1 1 endif if(abs(x).lt.0.2)then
Use series expansion. x2=x**2 dawson=x*(1.-A1*x2*(1.-
A2*x2*(1.-A3*x2))) else Use sampling theorem representa-
tion. xx=abs(x) n0=2*nint(0.5*xx/H) xp=xx-float(n0)*H
e1=exp(2.*xp*H) e2=e1**2 d1=float(n0+1) d2=d1-2. sum=0.
do 1 2 i=1,NMAX

254 Chapter 6. Special Functions sum=sum+c(i)*(e1/d1+1./(d2*e1))
d1=d1+2. d2=d2-2. e1=e2*e1 enddo 1 2 dawson=0.5641895835*sign(exp(-
xp**2),x)*sum Constant is 1/vp. endif return END Other
methods for computing Dawsons integral are also known [2,3].
CITED REFERENCES AND FURTHER READING: Rybicki,
G.B. 1989, Computers in Physics, vol. 3, no. 2, pp. 8587. [1]
Cody, W.J., Pociorek, K.A., and Thatcher, H.C. 1970, Mathe-
matics of Computation, vol. 24, pp. 171178. [2] McCabe, J.H.
1974, Mathematics of Computation, vol. 28, pp. 811816. [3]
6.11 Elliptic Integrals and Jacobian Elliptic Functions Elliptic

integrals occur in many applications, because any integral of
the form R(t, s) dt (6.11.1) where R is a rational function of t
and s, and s is the square root of a cubic or quartic polynomial
in t, can be evaluated in terms of elliptic integrals. Standard
references [1] describe how to carry out the reduction, which
was originally done by Legendre. Legendre showed that only
three basic elliptic integrals are required. The simplest of these
is dt I1 = x (a1 + b1 t)(a2 + b2 t)(a3 + b3 t)(a4 + b4 t) (6.11.2)
y where we have written the quartic s2 in factored form. In
standard integral tables [2], one of the limits of integration is
always a zero of the quartic, while the other limit lies closer
than the next zero, so that there is no singularity within the
interval. To evaluate I1 , we simply break the interval [y, x]
into subintervals, each of which either begins or ends on a sin-
gularity. The tables, therefore, need only distinguish the eight
cases in which each of the four zeros (ordered according to size)
appears as the upper or lower limit of integration. In addition,
when one of the bs in (6.11.2) tends to zero, the quartic reduces
to a cubic, with the largest or smallest singularity moving to 8;
this leads to eight more cases (actually just special cases of the
first eight). The sixteen cases in total are then usually tabu-
lated in terms of Legendres standard elliptic integral of the 1st
kind, which we will define below. By a change of the variable of
integration t, the zeros of the quartic are mapped to standard
locations

254 Chapter 6. Special Functions sum=sum+c(i)*(e1/d1+1./(d2*e1))
d1=d1+2. d2=d2-2. e1=e2*e1 enddo 1 2 dawson=0.5641895835*sign(exp(-
xp**2),x)*sum Constant is 1/vp. endif return END Other
methods for computing Dawsons integral are also known [2,3].
CITED REFERENCES AND FURTHER READING: Rybicki,
G.B. 1989, Computers in Physics, vol. 3, no. 2, pp. 8587. [1]
Cody, W.J., Pociorek, K.A., and Thatcher, H.C. 1970, Mathe-

matics of Computation, vol. 24, pp. 171178. [2] McCabe, J.H.
1974, Mathematics of Computation, vol. 28, pp. 811816. [3]
6.11 Elliptic Integrals and Jacobian Elliptic Functions Elliptic
integrals occur in many applications, because any integral of
the form R(t, s) dt (6.11.1) where R is a rational function of t
and s, and s is the square root of a cubic or quartic polynomial
in t, can be evaluated in terms of elliptic integrals. Standard
references [1] describe how to carry out the reduction, which
was originally done by Legendre. Legendre showed that only
three basic elliptic integrals are required. The simplest of these
is dt I1 = x (a1 + b1 t)(a2 + b2 t)(a3 + b3 t)(a4 + b4 t) (6.11.2)
y where we have written the quartic s2 in factored form. In
standard integral tables [2], one of the limits of integration is
always a zero of the quartic, while the other limit lies closer
than the next zero, so that there is no singularity within the
interval. To evaluate I1 , we simply break the interval [y, x]
into subintervals, each of which either begins or ends on a sin-
gularity. The tables, therefore, need only distinguish the eight
cases in which each of the four zeros (ordered according to size)
appears as the upper or lower limit of integration. In addition,
when one of the bs in (6.11.2) tends to zero, the quartic reduces
to a cubic, with the largest or smallest singularity moving to 8;
this leads to eight more cases (actually just special cases of the
first eight). The sixteen cases in total are then usually tabu-
lated in terms of Legendres standard elliptic integral of the 1st
kind, which we will define below. By a change of the variable of
integration t, the zeros of the quartic are mapped to standard
locations

6.11 Elliptic Integrals and Jacobian Elliptic Functions 255
on the real axis. Then only two dimensionless parameters are
needed to tabulate Legendres integral. However, the symmetry
of the original integral (6.11.2) under permutation of the roots

is concealed in Legendres notation. We will get back to Legen-
dres notation below. But first, here is a better way: Carlson [3]
has given a new definition of a standard elliptic integral of the
first kind, dt 8 RF (x, y, z)= 1 2 (t + x)(t + y)(t + z) (6.11.3)
0 where x, y, and z are nonnegative and at most one is zero.
By standardizing the range of integration, he retains permuta-
tion symmetry for the zeros. (Weierstrass canonical form also
has this property.) Carlson first shows that when x or y is a
zero of the quartic in (6.11.2), the integral I1 can be written in
terms of RF in a form that is symmetric under permutation of
the remaining three zeros. In the general case when neither x
nor y is a zero, two such RF functions can be combined into a
single one by an addition theorem, leading to the fundamental
formula I1 =2RF (U2 14)(6.11.4) 12 ,U2 13 ,U2 where Ui j
=(Xi Xj Yk Ym + Yi YjXk Xm)/(x - y)(6.11.5) Xi =(ai + bi
x)1 / 2 ,Yi =(ai + bi y)1 /2 (6.11.6) and i, j, k, m is any permu-
tation of 1, 2, 3, 4. A short-cut in evaluating these expressions
is U2 1 2 - (a1 b4 - a4 b1)(a2 b3 - a3 b2) 1 3 = U2 (6.11.7)
U2 1 2 - (a1 b3 - a3 b1)(a2 b4 - a4 b2) 1 4 = U2 The U s
correspond to the three ways of pairing the four zeros, and I1
is thus manifestly symmetric under permutation of the zeros.
Equation (6.11.4) therefore reproduces all sixteen cases when
one limit is a zero, and also includes the cases when neither
limit is a zero. Thus Carlsons function allows arbitrary ranges
of integration and arbitrary positions of the branch points of
the integrand relative to the interval of integration. To handle
elliptic integrals of the second and third kind, Carlson defines
the standard integral of the third kind as dt 8 (6.11.8) RJ (x, y,
z, p)= 3 2 (t + p) (t + x)(t + y)(t + z) 0 which is symmetric in
x, y, and z. The degenerate case when two arguments are equal
is denoted RD (x, y, z)=RJ (x, y, z, z)(6.11.9) and is symmet-
ric in x and y. The function RD replaces Legendres integral

of the second kind. The degenerate form of RF is denoted RC
(x, y)=RF (x, y, y)(6.11.10) It embraces logarithmic, inverse
circular, and inverse hyperbolic functions. Carlson [4-7] gives
integral tables in terms of the exponents of the linear factors
of the quartic in (6.11.1). For example, the integral where the
exponents are (1 2 ,- 1 2 ,-3 2) 2 ,1 can be expressed as a single
integral in terms of RD ; it accounts for 144 separate cases in
Gradshteyn and Ryzhik [2]! Refer to Carlsons papers [3-7] for
some of the practical details in reducing elliptic integrals to his
standard forms, such as handling complex conjugate zeros.

256 Chapter 6. Special Functions Turn now to the numeri-
cal evaluation of elliptic integrals. The traditional methods [8]
are Gauss or Landen transformations. Descending transforma-
tions decrease the modulus k of the Legendre integrals towards
zero, increasing transformations increase it towards unity. In
these limits the functions have simple analytic expressions.
While these methods converge quadratically and are quite sat-
isfactory for integrals of the first and second kinds, they gener-
ally lead to loss of significant figures in certain regimes for inte-
grals of the third kind. Carlsons algorithms [9,10], by contrast,
provide a unified method for all three kinds with no significant
cancellations. The key ingredient in these algorithms is the du-
plication theorem: RF (x, y, z)=2RF (x + , y + , z +) (6.11.11)
x + = RF 4 , y + 4 , z + 4 where =(xy)1 / 2 +(xz)1 / 2 +(yz)1/
2 (6.11.12) This theorem can be proved by a simple change of
variable of integration[11]. Equation (6.11.11) is iterated until
the arguments of RF are nearly equal. For equal arguments
we have RF (x, x, x)=x-1 / 2 (6.11.13) When the arguments
are close enough, the function is evaluated from a fixed Taylor
expansion about (6.11.13) through fifth-order terms. While the
iterative part of the algorithm is only linearly convergent, the
error ultimately decreases by a factor of 46 = 4096 for each

iteration. Typically only two or three iterations are required,
perhaps six or seven if the initial values of the arguments have
huge ratios. We list the algorithm for RF here, and refer you
to Carlsons paper [9] for the other cases. Stage 1: For n =0, 1,
2,... compute n =(xn + yn + zn)/3 Xn =1- (xn /n),Yn =1-
(yn /n),Zn =1- (zn /n) n =max(—Xn —, —Yn —, —Zn —)
If n ¡ tol go to Stage 2; else compute n =(xn yn)1 / 2 +(xn
zn)1 / 2 +(yn zn)1 / 2 xn+ 1 =(xn + n)/4,yn + 1 =(yn
+ n)/4,zn +1 =(zn + n)/4 and repeat this stage. Stage 2:
Compute E2 = Xn Yn - Z2 n ,E3 = Xn Yn Zn RF =(1- 1 2 -
3 1 0 E2 + 1 1 4 E3 + 1 2 4 E2 4 4 E2 E3)/(n)1/ 2 In some
applications the argument p in RJ or the argument y in RC
is negative, and the Cauchy principal value of the integral is
required. This is easily handled by using the formulas RJ (x,
y,z, p)= [(- y)RJ (x, y, z,) - 3RF (x, y, z)+3RC (xz/y, p /y)]
/(y - p) (6.11.14) where = y + (z - y)(y - x) (6.11.15) y - p

6.11 Elliptic Integrals and Jacobian Elliptic Functions 257
is positive if p is negative, and 1/ 2 RC (x - y, -y)(6.11.16)
RC (x, y)= x x - y The Cauchy principal value of RJ has a
zero at some value of p¡0, so (6.11.14) will give some loss of
significant figures near the zero. FUNCTION rf(x,y,z) REAL
rf,x,y,z,ERRTOL,TINY,BIG,THIRD,C1,C2,C3,C4 PARAME-
TER (ERRTOL=.08,TINY=1.5e-38,BIG=3.E37,THIRD=1./3.,
* C1=1./24.,C2=.1,C3=3./44.,C4=1./14.) Computes Carl-
sons elliptic integral of the first kind, RF (x, y,z). x,
y,andz must be nonnegative, and at most one can be zero.
TINY must be at least 5 times the machine under ow limit,
BIG at most one fifth the machine over ow limit. REAL
alamb,ave,delx,dely,delz,e2,e3,sqrtx,sqrty,sqrtz,xt,yt,zt if(min(x,y,z).lt.0..or.min(x+y,x+z,y+z).lt.TINY.or.
* max(x,y,z).gt.BIG)pause invalid arguments in rf xt=x yt=y
zt=z 1 continue sqrtx=sqrt(xt) sqrty=sqrt(yt) sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz xt=.25*(xt+alamb) yt=.25*(yt+alamb)

zt=.25*(zt+alamb) ave=THIRD*(xt+yt+zt) delx=(ave-xt)/ave
dely=(ave-yt)/ave delz=(ave-zt)/ave if(max(abs(delx),abs(dely),abs(delz)).gt.ERRTOL)goto
1 e2=delx*dely-delz**2 e3=delx*dely*delz rf=(1.+(C1*e2-C2-
C3*e3)*e2+C4*e3)/sqrt(ave) return END A value of 0.08 for
the error tolerance parameter is adequate for single precision
(7 n , we see that 0.0025 will yield double precision signifi-
cant digits). Since the error scales as 6 (16 significant digits)
and require at most two or three more iterations. Since the
coefficients of the sixth-order truncation error are different for
the other elliptic functions, these values for the error toler-
ance should be changed to 0.04 and 0.0012 in the algorithm
for RC , and 0.05 and 0.0015 for RJ and RD . As well as be-
ing an algorithm in its own right for certain combinations of
elementary functions, the algorithm for RC is used repeatedly
in the computation of RJ . The Fortran implementations test
the input arguments against two machine-dependent constants,
TINY and BIG, to ensure that there will be no under ow or
over ow during the computation. We have chosen conserva-
tive values, corresponding to a machine minimum of 3 10-
39 and a machine maximum of 1.7 103 8 . You can always
extend the range of admissible argument values by using the
homogeneity relations (6.11.22), below. FUNCTION rd(x,y,z)
REAL rd,x,y,z,ERRTOL,TINY,BIG,C1,C2,C3,C4,C5,C6 PA-
RAMETER (ERRTOL=.05,TINY=1.e-25,BIG=4.5E21,C1=3./14.,C2=1./6.,
* C3=9./22.,C4=3./26.,C5=.25*C3,C6=1.5*C4) Computes Carl-
sons elliptic integral of the second kind, RD (x, y, z). x and y
must be nonnegative, and at most one can be zero. z must be
positive. TINY must be at least twice the negative 2/3 power of
the machine over ow limit. BIG must be at most 0.1 ERRTOL
times the negative 2/3 power of the machine under ow limit.
REAL alamb,ave,delx,dely,delz,ea,eb,ec,ed,ee,fac,sqrtx,sqrty,

258 Chapter 6. Special Functions * sqrtz,sum,xt,yt,zt

if(min(x,y).lt.0..or.min(x+y,z).lt.TINY.or. * max(x,y,z).gt.BIG)pause
invalid arguments in rd xt=x yt=y zt=z sum=0. fac=1. 1 con-
tinue sqrtx=sqrt(xt) sqrty=sqrt(yt) sqrtz=sqrt(zt) alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
sum=sum+fac/(sqrtz*(zt+alamb)) fac=.25*fac xt=.25*(xt+alamb)
yt=.25*(yt+alamb) zt=.25*(zt+alamb) ave=.2*(xt+yt+3.*zt)
delx=(ave-xt)/ave dely=(ave-yt)/ave delz=(ave-zt)/ave if(max(abs(delx),abs(dely),abs(delz)).gt.ERRTOL)goto
1 ea=delx*dely eb=delz*delz ec=ea-eb ed=ea-6.*eb ee=ed+ec+ec
rd=3.*sum+fac*(1.+ed*(-C1+C5*ed-C6*delz*ee) * +delz*(C2*ee+delz*(-
C3*ec+delz*C4*ea)))/(ave*sqrt(ave)) return END FUNCTION
rj(x,y,z,p) REAL rj,p,x,y,z,ERRTOL,TINY,BIG,C1,C2,C3,C4,C5,C6,C7,C8
PARAMETER (ERRTOL=.05,TINY=2.5e-13,BIG=9.E11,C1=3./14.,C2=1./3.,
* C3=3./22.,C4=3./26.,C5=.75*C3,C6=1.5*C4,C7=.5*C2,C8=C3+C3)
C USES rc,rf Computes Carlsons elliptic integral of the third
kind, RJ (x,y, z, p). x, y,andz must be nonnegative, and
at most one can be zero. p must be nonzero. If p¡0, the
Cauchy principal value is returned. TINY must be at least
twice the cube root of the machine under ow limit, BIG at
most one fifth the cube root of the machine over ow limit.
REAL a,alamb,alpha,ave,b,beta,delp,delx,dely,delz,ea,eb,ec, *
ed,ee,fac,pt,rcx,rho,sqrtx,sqrty,sqrtz,sum,tau,xt, * yt,zt,rc,rf if(min(x,y,z).lt.0..or.min(x+y,x+z,y+z,abs(p)).lt.TINY.or.
* max(x,y,z,abs(p)).gt.BIG)pause invalid arguments in rj sum=0.
fac=1. if(p.gt.0.)then xt=x yt=y zt=z pt=p else xt=min(x,y,z)
zt=max(x,y,z) yt=x+y+z-xt-zt a=1./(yt-p) b=a*(zt-yt)*(yt-
xt) pt=yt+b rho=xt*zt/yt

263 6.12 Hypergeometric Functions CITED REFERENCES
AND FURTHER READING: Erd elyi, A., Magnus, W., Ober-
hettinger, F., and Tricomi, F.G. 1953, Higher Transcendental
Functions, Vol. II, (New York: McGraw-Hill). [1] Gradshteyn,
I.S., and Ryzhik, I.W. 1980, Table of Integrals, Series, and
Products (New York: Academic Press). [2] Carlson, B.C. 1977,
SIAM Journal on Mathematical Analysis, vol. 8, pp. 231242.
[3] Carlson, B.C. 1987, Mathematics of Computation, vol. 49,

pp. 595606 [4]; 1988, op. cit., vol. 51, pp. 267280 [5]; 1989,
op. cit., vol. 53, pp. 327333 [6]; 1991, op. cit., vol. 56, pp.
267280. [7] Bulirsch, R. 1965, Numerische Mathematik, vol. 7,
pp. 7890; 1965, op. cit., vol. 7, pp. 353354; 1969, op. cit.,
vol. 13, pp. 305315. [8] Carlson, B.C. 1979, Numerische Math-
ematik, vol. 33, pp. 116. [9] Carlson, B.C., and Notis, E.M.
1981, ACM Transactions on Mathematical Software, vol. 7,
pp. 398403. [10] Carlson, B.C. 1978, SIAM Journal on Mathe-
matical Analysis, vol. 9, p. 524528. [11] Abramowitz, M., and
Stegun, I.A. 1964, Handbook of Mathematical Functions, Ap-
plied Mathe- matics Series, Volume 55 (Washington: National
Bureau of Standards; reprinted 1968 by Dover Publications,
New York), Chapter 17. [12] Mathews, J., and Walker, R.L.
1970, Mathematical Methods of Physics, 2nd ed. (Reading,
MA: W.A. Benjamin/Addison-Wesley), pp. 7879. 6.12 Hyper-
geometric Functions As was discussed in 5.14, a fast, general
routine for the the complex hyperge- ometric function 2 F1 (a,
b, c; z), is difficult or impossible. The function is defined as
the analytic continuation of the hypergeometric series, z z 2 2
F1 (a, b, c; z)=1+ ab c 1! + a(a +1)b(b +1) c(c +1) 2! +
zj + a(a +1)...(a + j - 1)b(b +1)...(b + j - 1) c(c +1)...(c +
j - 1) j! + (6.12.1) This series converges only within the unit
circle —z— ¡ 1 (see [1]), but ones interest in the function is
not confined to this region. Section 5.14 discussed the method
of evaluating this function by direct path integration in the
complex plane. We here merely list the routines that result.
Implementation of the function hypgeo is straightforward, and
is described by comments in the program. The machinery as-
sociated with Chapter 16s routine for integrating differential
equations, odeint, is only minimally intrusive, and need not
even be completely understood: use of odeint requires a com-
mon block with one zeroed variable, one subroutine call, and a

prescribed format for the derivative routine hypdrv. The sub-
routine hypgeo will fail, of course, for values of z too close to
the singularity at 1. (If you need to approach this singularity,
or the one at 8, use the linear transformation formulas in 15.3
of [1].) Away from z =1, and for moderate values of a, b, c, it
is often remarkable how few steps are required to integrate the
equations. A half-dozen is typical.

264 Chapter 6. Special Functions FUNCTION hyp-
geo(a,b,c,z) COMPLEX hypgeo,a,b,c,z REAL EPS PARAME-
TER (EPS=1.e-6) Accuracy parameter. C USES bsstep,hypdrv,hypser,odeint
Complex hypergeometric function 2 F1 for complex a, b,c,andz
, by direct integration of the hypergeometric equation in the
complex plane. The branch cut is taken to lie along the
real axis, Re z¿1. INTEGER kmax,nbad,nok EXTERNAL
bsstep,hypdrv COMPLEX z0,dz,aa,bb,cc,y(2) COMMON /hypg/
aa,bb,cc,z0,dz COMMON /path/ kmax Used by odeint. kmax=0
if (real(z)**2+aimag(z)**2.le.0.25) then Use series... call
hypser(a,b,c,z,hypgeo,y(2)) return else if (real(z).lt.0.) then
...or pick a starting point for the path inte- gration. z0=cmplx(-
0.5,0.) else if (real(z).le.1.0) then z0=cmplx(0.5,0.) else
z0=cmplx(0.,sign(0.5,aimag(z))) endif aa=a Load the common
block, used to pass pa- rameters over the head of odeint to hyp-
drv. bb=b cc=c dz=z-z0 call hypser(aa,bb,cc,z0,y(1),y(2)) Get
starting function and derivative. call odeint(y,4,0.,1.,EPS,.1,.0001,nok,nbad,hypdrv,bsstep)
The arguments to odeint are the vector of independent variabl
es, its length, the starting and ending values of the dependent
variable, the accuracy parameter, an initial guess for stepsize,
a minimum stepsize, the (returned) number of good and bad
steps taken, and the names of the derivative routine and the
(here Bulirsch-Stoer) stepping routine. hypgeo=y(1) return
END SUBROUTINE hypser(a,b,c,z,series,deriv) INTEGER n
COMPLEX a,b,c,z,series,deriv,aa,bb,cc,fac,temp Returns the

hypergeometric series 2 F1 and its derivative, iterating to ma-
chine accuracy. For cabs(z) = 1/2 convergence is quite rapid.
deriv=cmplx(0.,0.) fac=cmplx(1.,0.) temp=fac aa=a bb=b
cc=c do 1 1 n=1,1000 fac=((aa*bb)/cc)*fac deriv=deriv+fac
fac=fac*z/n series=temp+fac if (series.eq.temp) return temp=series
aa=aa+1. bb=bb+1. cc=cc+1. enddo 1 1 pause convergence
failure in hypser END

265 6.12 Hypergeometric Functions SUBROUTINE hyp-
drv(s,y,dyds) REAL s COMPLEX y(2),dyds(2),aa,bb,cc,z0,dz,z
Derivative subrouti ne for the hypergeometric equation, see
text equation (5.14.4). COMMON /hypg/ aa,bb,cc,z0,dz
z=z0+s*dz dyds(1)=y(2)*dz dyds(2)=((aa*bb)*y(1)-(cc-((aa+bb)+1.)*z)*y(2))*dz/(z*(1.-
z)) return END CITED REFERENCES AND FURTHER
READING: Abramowitz, M., and Stegun, I.A. 1964, Hand-
book of Mathematical Functions, Applied Mathe- matics Se-
ries, Volume 55 (Washington: National Bureau of Standards;
reprinted 1968 by Dover Publications, New York). [1]

