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10. Ordinary Differential Equations

10.1. Introduction

Problems involving ordinary differential equations (ODEs) can always be reduced
to the set of first-order differential equations. For example the second order equation

(10.1.1) d 2y
dx2 + q(x)

dy
dx

= r(x)

can be rewritten as two first-order equations

(10.1.2)

dy
dx

= z(x)

dz
dx

= r(x)− q(x)z(x),

where z is a new variable. This exemplifies the procedure for an arbitrary ODE. The
usual choice for the new variables is to let them be just derivatives if each other, and, of
course, of original variable. Occasionally, it is useful to incorporate into their definition
some other factors in the equation, or some powers of the independent variable, for the
purpose of the mitigating singular behavior that could result in overflows or increased
roundoff error. Thus, involving new variables should be carefully chosen. The possibility
of a formal reduction of a differential equation system to an equivalent set of first-order
equations means that computer programs for the solution of differential equation sets
can be directed toward the general form

(10.1.3) dyi(x)
dx

= fi(x, y1, · · · , yn) (i = 1, . . . , n),

where the fi functions are known and y1, y2, . . . , yn are dependent variables.
A problem involving ODEs is not completely specified by its equations. Even more

crucial in determining how to start solving problem numerically is the nature of the
problem’s boundary conditions. Boundary conditions are algebraic conditions on the
values of the functions yi in (10.1.3). Generally, they can be satisfied at discrete specified
points, but do not hold between those points, i.e. are not preserved automatically by the
differential equations. Boundary conditions can be as simple as requiring that certain
variables have certain numerical values, or as complicated as a set of nonlinear algebraic
equations among the variables. Usually, it is the nature of the boundary conditions that
determines which numerical methods will be applied. Boundary conditions divide into
two broad categories.
• Initial value problems, where all the y are given at some starting value xs, and it is

desired to find the the yi’s at some final point xf , or at some discrete list of points
(for example, to generate a table of results).
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• Two-point boundary value problems, where the boundary conditions are specified at
more than one x. Usually some conditions are specified at xs and the remainder at
xf .
In considering methods for numerical solution of Cauchy problem for differential

equations of first order, we will note two general classes of those methods:
a) Linear multi-step methods,
b) Runge-Kutta methods.

The first class of methods has a property of linearity, in contrary to Runge-Kutta
methods, where the increasing of method order is realized by involving nonlinearity.
The common ”predecessor” of both classes is Euler’s method, which belongs to both
classes.

In newer times there appeared a whole series of methods, so known hybrid methods,
which use good characteristics of mentioned basic classes of methods.

10.2. Euler’s method

Euler’s method is the simplest numerical method for solving Cauchy’s problem

y′ = f(x, y), y(xo) = y0(10.2.1)

and is based on approximative equality

y(x) = y(x0) + (x− x0)y′(x0),

i.e.

y(x) = y(x0) + (x− x0)f(x0, y0),(10.2.2)

in regard to (10.2.1). If we denote with y1 the approximate value for y(x1), based on
(10.2.2) we have

y1 = y0 + (x1 − x0)f(x0, y0).

In general case, for arbitrary set of points x0 < x1 < x2 < . . . , the approximate values for
y(xn), denoted as yn, can be determined using

yn+1 = yn + (xn+1 − xn)f(xn, yn) (n = 0, 1, . . .).(10.2.3)

The last formula defines Euler’s method, which geometric interpretation is given in the
Fig. 10.2.1.

Figure 10.2.1

Polygonal line (x0, y0)− (x1, y1)− (x2, y2)− . . . is known as Euler’s polygon.
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The points xn are usually chosen equidistantly, i.e. xn+1 − xn = h = const.(> 0) (n =
0, 1, . . .) in which case (10.2.3) reduces to

yn+1 = yn + hf(xn, yn) (n = 0, 1, . . .).

10.3. General linear multi-step method

In this and following sections a general method for solving Cauchy problem

y′ = f(x, y), y(x0) = y0 (x0 ≤ x ≤ b).(10.3.1)

will be considered. If we divide the segment [x0, b] to N subsegments of length h =
b− x0

N
,

we get a string of points xn determined with

xn = x0 + nh (n = 0, 1, . . . , N).

Let yn denotes sequence of approximate values of solutions of problem (10.3.1) in
points xn and let fn ≡ f(xn, yn). It is our task to determine a set yn. In order to solve this
problem a number of methods have been developed. One of them is Euler’s method,
which has been considered in previous section. At Euler’s method series yn is computed
recursively using

yn+1 − yn = hfn (n = 0, 1, . . . , N),(10.3.2)

whereby the linear relation among yn, yn+1 and fn exists. In general case, for evaluation
of series more complicated recurrence relations than (10.3.2) can be used. Among the
methods originated from these relations, important role have the methods with linear
relation between yn+i, fn+i (i = 0, 1, . . . k) and they form the class of linear multi-step
methods.

General linear multi-step method can be represented in form

k
∑

i=0

αiyn+1 = h
k

∑

i=0

βfn+i (n = 0, 1, . . .),(10.3.3)

where α and β are constant coefficients determined by accuracy up to multiplicative
constant. In order to obtain their uniqueness we will take αk = 1.

If βk = 0, we say that method (10.3.3) is of open type or that is explicit; in counterpart
we say that it is of closed type or implicit.

In general case (10.3.3) represents nonlinear difference equation, because of fn+i ≡
f(xn+i, yn+i).

For determination of series yn using method (10.3.3) it is necessary to know initial
values yi (i = 0, 1, . . . , k − 1). Knowing in advance only value y0, a particular problem
in application of multi-step methods (10.3.3) is determination of other initial values. A
special section will be devoted to this problem.

Supposing that initial values yi (i = 0, 1, . . . , k− 1) are known, at explicit methods are
directly computed yk, yk+1, . . . , yN using

yn+k = h
k−1
∑

i=0

βifn+i −
k−1
∑

i=0

αiyn+i (n = 0, 1, . . . , N − k).

Nevertheless, at implicit methods for determination of values yn+k the equation

yn+k = hβf(xn+k, yn+k) + Φ,(10.3.4)
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where

Φ = h
k−1
∑

i=0

βifn+i −
k−1
∑

i=0

αiyn+i,

shell be solved. When (x, y) → f(x, y) nonlinear function which satisfies Lipschitz condi-
tion in y with constant L, the equation (10.3.4) can be solved by iterative process

y[s+1]
n+k = hβkf(xn+k, y[s]

n+k) + Φ,(10.3.5)

starting from arbitrary value y[0]
n+k if

h|βk|L < 1.

The condition given by this inequality ensures convergence of iterative process (10.3.5).
Let us for method (10.3.3) define difference operator Lh : C1[x0, b] → C[x0, b] by

Lh[y] =
k

∑

i=0

[αiy(x + ih)− hβiy′(x + ih)].(10.3.6)

Let function g ∈ C1[x0, b]. Then Lh[g] can be presented in form

Lh[g] = C0g(x) + C1hg′(x) + C2h2g′′(x) + · · · ,(10.3.7)

where Cj (j = 0, 1, . . .) are constants not depending on h and g.

Definition 10.3.1. Linear multi-step method (10.3.3) is of order p if in development (10.3.7)

C0 = C1 = . . . = Cp = 0 and Cp+1 6= 0.

If x → y(x) is exact solution of problem (10.3.1) and yn series of approximate values
of this solution in points xn = x0 + nh (n = 0, 1, . . . , N) obtained by method (10.3.3), with
initial values yi = si(h) (i = 0, 1, . . . , k − 1).

Definition 10.3.2. For linear multi-step method (10.3.3) one says to be convergent if for every x ∈ [x0, b]

lim
x→0

x−x0=nh

yn = y(x)

and for initial values hold
lim
h→0

si(h) = y0 (i = 0, 1, . . . , k − 1).

Linear multi-step method (10.3.3) can be characterized by first and second charac-
teristic polynomials given by

ρ(ξ) =
k

∑

i=0

αiξi and σ(ξ) =
k

∑

i=0

βiξi,

respectively.
Two important classes of convergent multi-step methods, which are met in practice

are:
1. Methods at which ρ(ξ) = ξk − ξk−1;
2. Methods at which ρ(ξ) = ξk − ξk−2.

Explicit methods of first class are called Adam-Bashforth methods, and the im-
plicit Adam-Moulton methods. Similarly, explicit methods of second class are called
Nystrom’s methods and corresponding implicit methods Milne-Simpson’s.

Of course, there are methods that do not belong to neither of these classes.
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10.4. Choice of initial values

As earlier mentioned, at application of linear multi-step methods on solving problem
10.3.1), it is necessary knowledge on initial values yi = si(h), such that

lim
h→0

si(h) = y0 (i = 1, . . . , k − 1).

Certainly, this problem is stated when k > 1.
If method (10.3.3) is of order p, then initial values si(h) are obviously to be chosen

such that
si(h)− y(xi) = O(hp+1) (i = 1, . . . , k − 1),

where x → y(x) is exact solution of problem (10.3.1).
In this section we will show one class of methods for determination of necessary

initial values.
Suppose that function f in differential equation (10.3.1) is enough times differentiable.

Than, based on Tailor’s method we have

y(x0 + h) = y(x0) + hy′(x0) +
h2

2!
y′′(x0) + · · ·+ hp

p!
y(p)(x0) + O(hp+1).

Last equation points out that it can be taken

si(h) = y(x0) + hy′(x0) +
h2

2!
y′′(x0) + · · ·+ hp

p!
y(p)(x0),

because of si(h) − y(x1) = O(hp+1) (x1 = x0 + h). The same procedure can be applied to
determination of other initial values. Namely, in general case, we have

si(h) = y(xi−1) + hy′(xi−1) +
h2

2!
y′′(xi−1) + · · ·+hp

p!
y(p)(xi−1) (i = 1, . . . , k − 1),

whereby for y(xi−1) we take si−1(h).

10.5. Predictor-corrector methods

As mentioned in section 10.3.3, application of implicit methods is in connection
with solution of equation (10.3.4) in every integration step, whereby for this solution is
used iterative process (10.3.5). Regardless to this difficulty in implicit method, they are
often used for solving of Cauchy problem, because they have a number of advantages
over explicit methods. (higher order, better numerical stability). The initial value y[0]

n+k

is determined in practice using some explicit method, which is then called predictor.
Implicit method (10.3.4) is then called corrector. Method obtained by such combination
is called predictor-corrector method.

For determination yn+k, the iterative procedure (10.3.5) should be applied until ful-
filment of the condition

|y[s+1]
n+k − y[s]

n+k| < ε,

where ε tolerable error, usually of order of local round-off error. Then for yn+k can be
taken y[s+1]

n+k .
Nevertheless, this method is usually not applied in practice, due to demanding large

number of function f evaluations by step of calculation and, in addition, this number
is varying from step to step. In order to reduce this number of calculations, number of
iterations in (10.3.5) is fixed. Thus, one takes only s = 0, 1, . . . , m− 1.
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10.6. Program realization of multi-step methods

In this section we will give program realization of explicit as well as implicit methods.
The presented programs are tested on the example (with h = 0.1).

y′ = x2 + y, y(1) = 1 (1 ≤ x ≤ 2).

The exact solution of this problem is y(x) = 6ex−1 − x2 − 2x− 2.

10.6.1. Euler’s method
Euler’s method is given by expression

yn+1 − yn = hfn (n = 0, 1, . . .),

of order p = 1, and Adams-Bashforth method of third order

yn+3 − yn+2 =
h
12

(23fn+2 − 16fn+1 + 5fn) (n = 0, 1, . . .),

are realized by subroutines EULER i ADAMS, respectively.

SUBROUTINE EULER (XP,XK,H,Y,FUN)
DIMENSION Y(1)
N=(XK-XP+0.00001)/H
X=XP
DO 11 I=1,N
Y(I+1)=Y(I)+H*FUN(X,Y(I))

11 X=X+H
RETURN
END

C
FUNCTION FUN (X,Y)
FUN=X*X+Y
RETURN
END

C
SUBROUTINE ADAMS (XP, XK, H, Y, FUN)
DIMENSION Y(1)
N=(XK-XP+0.00001)/H
X=XP
F0=FUN (X,Y(1))
F1=FUN (X+H,Y(2))
N2=N-2
DO 11 I=1,N2
F2=FUN(X+2.*H,Y(I+2))
Y(I+3)=Y(I+2)+H*(23.*F2-16.*F1+5.*F0)/12.
F0=F1
F1=F2

11 X=X+H
RETURN
END

Parameters in list of subroutine parameters are of following meaning:
XP and XK - start and end point of integration interval;
H - step of integration;
Y - vector of approximate values of solution obtained by multi-step method, whereby

at Euler’s method Y(1) represents given initial value, whereas at Adam’s method initial
values are given by Y(1), Y(2) i Y(3);

FUN - name of function subroutine which defines right hand size of differential equa-
tion f(x, y). Initial values for Adam’s method we determine by using Taylor’s method
for p = 3 (see section 10.3.4). Namely, being

y(1) = 1, y′(1) = 2, y′′(1) = 4, y′′′(1) = 6, h = 0.1,
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we get Y(1)=1., Y(2)=1.221, Y(3)=1.48836.
Main program and output listing are of form:

C
C==================================================
C RESAVANJE DIFERENCIJALNIH JEDNACINA
C EKSPLICITNIM METODIMA
C==================================================

EXTERNAL FUN
DIMENSION Y(100),Z(100)
F(X)=6.*EXP(X-1.)-X*X-2.*X-2.
OPEN(5,FILE=’EULER.OUT’)
WRITE (5,10)

10 FORMAT(3X,’RESAVANJE DIFERENCIJAL.JED.’,
1’EKSPLICITNIM METODIMA’//8X,’XN’,8X,’YN(I)’,
15X,’GRESKA(%)’,3X,’YN(II)’,4X,’GRESKA (%)’/)
XP=1.
XK=2.
H=0.1
Y(1)=1.
CALL EULER (XP,XK,H,Y,FUN)
Z(1)=Y(1)
Z(2)=1.221
Z(3)=1.48836
CALL ADAMS (XP,XK,H,Z,FUN)
N=(XK-XP+0.00001)/H
NN=N+1
X=XP
DO 22 I=1,NN
G1=ABS((Y(I)-F(X))/F(X))*100.
G2=ABS((Z(I)-F(X))/F(X))*100.
WRITE (5,20)X,Y(I),G1,Z(I),G2

22 X=X+H
20 FORMAT (8X,F3.1,2(4X,F9.5,4X,F5.2))

CLOSE(5)
STOP
END

RESAVANJE DIFERENCIJAL.JED.EKSPLICITNIM METODIMA
XN YN(I) GRESKA(%) YN(II) GRESKA (%)
1.0 1.00000 .00 1.00000 .00
1.1 1.20000 1.72 1.22100 .00
1.2 1.44100 3.19 1.48836 .00
1.3 1.72910 4.42 1.80883 .02
1.4 2.07101 5.47 2.19028 .03
1.5 2.47411 6.37 2.64126 .04
1.6 2.94652 7.13 3.17116 .05
1.7 3.49717 7.79 3.79040 .06
1.8 4.13589 8.36 4.51045 .06
1.9 4.87348 8.87 5.34403 .07
2.0 5.72183 9.32 6.30518 .07

10.6.2. Taking Euler’s method as predictor and trapeze rule (p = 2)

yn+1 − yn =
h
2
(fn + fn+1) (n = 0, 1, . . .),

as corrector (with number of iterations m = 2) the subroutine PREKOR is written. Main
program, subprogram, and output results are of form:

C===================================================
C RESAVANJE DIF.JED. METODOM PREDIKTOR-KOREKTOR
C===================================================

EXTERNAL FUN
DIMENSION Y(100)
F(X)=6.*EXP(X-1.)-X*X-2.*X-2.
OPEN(5,FILE=’PREKOR.OUT’)
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OPEN(8,FILE=’PREKOR.TXT’)
WRITE(5,10)

10 FORMAT(8X,’RESAVANJE DIF. JED. METODOM’,
1’ PREDIKTOR-KOREKTOR’//15X,’XN’,13X,’YN’
2,10X,’GRESKA(%)’/)
READ(8,5)XP,XK,YP,H

5 FORMAT(4F6.1)
CALL PREKOR(XP,XK,YP,H,Y,FUN)
N=(XK-XP+0.00001)/H
NN=N+1
X=XP
DO 11 I=1,NN
G=ABS((Y(I)-F(X))/F(X))*100.
WRITE(5,15)X,Y(I),G

15 FORMAT(15X,F3.1,8X,F9.5,8X,F5.2)
11 X=X+H

STOP
END

C
C

SUBROUTINE PREKOR(XP,XK,YP,H,Y,FUN)
DIMENSION Y(100)
N=(XK-XP+0.00001)/H
X=XP
Y(1)=YP
DO 10 I=1,N

C PROGNOZIRANJE VREDNOSTI
FXY=FUN(X,Y(I))
YP=Y(I)+H*FXY

C KOREKCIJA VREDNOSTI
DO 20 M=1,2

20 YP=Y(I)+H/2.*(FXY+FUN(X+H,YP))
Y(I+1)=YP

10 X=X+H
RETURN
END

C
C

FUNCTION FUN(X,Y)
FUN=X*X+Y
RETURN
END

RESAVANJE DIF. JED. METODOM PREDIKTOR-KOREKTOR
XN YN GRESKA(%)
1.0 1.00000 .00
1.1 1.22152 .04
1.2 1.48952 .07
1.3 1.81097 .10
1.4 2.19363 .12
1.5 2.64602 .14
1.6 3.17760 .15
1.7 3.79881 .17
1.8 4.52118 .18
1.9 5.35747 .18
2.0 6.32177 .19

10.7. Runge-Kutta methods

In previous sections are considered linear multi-step methods for solving Cauchy
problem (10.3.1). The order of these methods can be enlarged by increasing number
of steps. Nevertheless, by sacrifice of linearity these methods posses, it is possible to
construct single-step methods of arbitrary order.

For solving Cauchy problem of form (10.3.1) with enough times differentiable function
f , it is possible to construct single-step methods of higher order (e.g. Taylor’s method).

Consider general explicit single-step method

yn+1 − yn = hΦ(xn, yn, h)(10.7.1)
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Definition 10.7.1. Method (10.7.1) is of order p if p is greatest integer for which holds

y(x + h)− y(x)− hΦ(x, y(x), h) = O(hp+1),

where x → y(x) is exact solution of problem (10.3.1).

Definition 10.7.2. Method (10.7.1) is consistent if Φ(x, y, 0) ≡ f(x, y).

Note that Taylor’s method is special case of method (10.7.1). Namely, at Taylor’s
method of order p we have

Φ(x, y, h) = ΦT (x, y, h) =
p−1
∑

i=0

hi

(i− 1)!
(

δ
δx

+ f
δ
δy

)if(x, y).(10.7.2)

In special case, at Eulerov’s method is Φ(x, y, h) = f(x, y).
In this section we will consider a special class of methods of form (10.7.1), which was

proposed in 1895. year by C. Runge. Later on, this class of methods of form (10.7.1) was
developed by W. Kutta i K. Heun.

As we will see later, all these methods contain free parameters. Considering time in
which these methods appeared, the free parameters have been chosen in such a way to
obtain as simple as possible formulas for practical calculation. Nevertheless, such values
of parameters do not ensure optimal characteristics of observed methods. In further text
these methods will be called classical. General explicit Runge-Kutta method is of form

yn+1 − yn = hΦ(xn, yn, h)(10.7.3)

where
Φ(x, y, h) =

m
∑

i=1

ciki,

k1 = f(x, y),

ki = f(x + ai, y + bih) (i = 2, . . . ,m).

ai =
i−1
∑

j=1

αij , bi =
i−1
∑

j=1

αijkj .(10.7.4)

Note that from the condition of consistence of method (10.7.3) it follows

m
∑

i=1

ci = 1.

Unknown coefficients which appear in this method are to be determined from the con-
dition that method has a maximal order. Here, we use the following fact: If Φ(x, y, h),
developed by degrees of h, can be presented in form

Φ(x, y, h) = ΦT (x, y, h) = O(hp),

where ΦT is defined by (10.7.2), then method (10.7.3) is of order p.
Find previously development ΦT (x, y, h) by degrees of h. Using Monge’s notations for

partial derivative, we have

(
∂
∂x

+
∂
∂y

) = fx + ffy = F

and
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(
∂
∂x

+ f
∂
∂y

)2 = (
∂
∂x

+ f
∂
∂y

)F = G + fyF,

where we put G = fxx + 2ffxy + f2fyy. Then from (10.7.2) it follows

ΦT (x, y, h) = f +
1
2
hF +

1
6
h2(G + fyF ) + O(h3).(10.7.5)

Consider now only Runge-Kutta methods of order p ≤ 3. One shows that for obtaining
method of third order it is enough to take m = 3. In this case, formulas (10.7.3) reduce
to

Φ(x, y, h) = c1k1 + c2k2 + c3k3

k1 = f(x, y)

k2 = f(x + a2h, y + b2h),

k3 = f(x + a3h, y + b3h)

and
a2 = α21, b2 = α21k1,

a3 = α31 + α32, b3 = α31k1 + α32k2.

By developing of function k2 in Taylor’s series in neighborhood of point (x, y), we get

k2 = f + a2Fh +
1
2
a2
2Gh2 + O(h3).

Because of
b3 = α31k1 + α32k2 = α31f + α32(f + a2Fh +

1
2
a2
2gh2) + O(h3)

we have

b3 = a3f + a2α32Fh + O(h2)

and
b2
3 = a2

3f
2 + O(h).

By developing of function k3 in neighborhood of point (x, y) and by using last equalities
we have

k3 = f + a3Fh +
1
2
(2a3α32Ffy + a2

3G)h2 + O(h3).

Finally, by substituting the obtained expressions for k1, k2, k3 in expression for Φ(x, y, h)
we get

Φ(x, y, h) =(c1 + c2 + c3)f + (c2a2 + c3a3)Fh

+ (c2a2
2G + 2c3a2α32Ffy + c3a2

3G)
h2

2
+ O(h3).

Last equality enables construction of methods for m = 1, 2, 3.

Case m=1. Being c2 = c3 = 0, we have

Φ(x, y, h) = c1f + O(h3).

By comparison with (10.7.5) we get

ΦT (x, y, h)− Φ(x, y, h) = (1− c1)f +
1
2
h2(G + fyF ) + O(h3),
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wherefrom we conclude that for c1 = 1 the method

yn+1 − yn = hfn,

of order p = 1 is obtained. Considering that it is Euler’s method, we see that it belongs
to the class of Runge-Kutta methods too.

Case m=2. Here is c3 = 0 and

ΦT (x, y, h) = (c1 + c2)f + c2a2Fh +
1
2
c2a2

2Gh2 + O(h3).

Because of
Φ(x, y, h)− ΦT (x, y, h) = (c1 + c2 − 1)f + (c2a2 −

1
2
)Fh

+
1
6
[(3c2a2

2 − 1)G− fyF ]h2 + O(h3),

we conclude that under condition

c1 + c2 = 1 and c2a2 =
1
2
,(10.7.6)

one obtains method of second order with one free parameter. Namely, from system of
equations (10.7.6) it follows

c2 =
1

2a2
andc1 =

2a2 − 1
2a2

,

where a2(6= 0) is free parameter. Thus, with m = 2 we have single-parametric family of
methods

yn+1 − yn =
h

2a2
((2a2 − 1)k1 + k2),

k1 = f(xn, yn),

k2 = f(xn + a2h, yn + a2k1h).

In special case, for a2 = 1
2 , we get Euler-Cauchy method

yn+1 − yn = hf(xn +
1
2
h, yn +

1
2
hf(xn, yn)).

Similarly, for a2 = 1, we get so known improved Euler-Cauchy method

yn+1 − yn =
h
2
[f(xn, yn) + f(xn + h, yn + hf(xn, yn)].

On geometric interpretation of obtained methods see, e.g. [6 ].

Case m=3. According to

Φ(x, y, h)− ΦT (x, y, h) = (c1 + c2 + c3 − 1)f + (c2a2 + c3a3 −
1
2
)Fh

+ [(c2a2
2 + c3a2

3 −
1
3
G + (2c3a2α32 −

1
3
)Ffy]

h2

2
+ O(

h
3
),

we conclude that for obtaining of methods of third order the satisfactory conditions are

(10.7.7)

c1 + c2 + c3 = 1,

c2a2 + c3a3 =
1
2
,

c2a2
2 + c3a2

3 =
1
3
,

c3a2α32 =
1
6
.
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Having four equations with six unknowns, it follows that, in case m = 3, we have two-
parametric family of Runge-Kutta methods. One can show that among methods of this
family does not exists not single method with order greater than three.

In special case, when a2 = 1
3 i a3 = 2

3 , from (10.7.7) it follows c1 = 1
4 , c2 = 0, c3 = 3

4 , α32 = 2
3

Thus, we obtained the method

yn+1 − yn =
h
4
(k1 + 3k3),

k1 = f(xn, yn),

k2 = f(xn +
h
3
, yn +

h
3
k1),

k3 = f(xn +
2h
3

, yn +
h
3
k2),

which is known in bibliography as Heun’s method.
For a2 = 1

2 , a3 = 1(⇒ c1 = c3 = 1
6 , c2 = 2

3 , α32 = 2) we get the method

yn+1 − yn =
h
6
(k1 + 4k2 + k3),

k1 = f(xn, yn),

k2 = f(xn +
h
2
, yn +

h
2
k1),

k3 = f(xn + h, yn − hk1 + 2hk2),

which is most popular among the methods of third order from the point of view of hand
calculations.

In case when m = 4, we get two-parameter family of methods of fourth order. Namely,
here, analogously to system (10.7.7), appears system of 11 equations in 13 unknowns.

Now we quote, without proof, Runge-Kutta method of fourth order.

(10.7.8)

yn+1 − yn =
h
6
(k1 + 2k2 + 2k3 + k4),

k1 = f(xn, yn),

k2 = f(xn +
h
2
, yn +

h
2
k1),

k3 = f(xn +
h
2
, yn +

h
2
k2),

k4 = f(xn + h, yn + hk3,

which is traditionally most used in applications.
From methods of fourth order it is often used so known Gill’s variant, which can be

expressed as the following recursive procedure:

n := 0, Q0 := 0

(∗) Y0 := yn,

k1 := hf(xn, Y0), Y1 := Y0 +
1
2
(k1 − 2Q0),

Q1 := Q0 +
3
2
(k1 − 2Q0)−

1
2
k1,

k2 := hf(xn +
h
2
, Y1), Y2 := Y1 + (1−

√

1/2)(k2 −Q1),

Q2 := Q1 + 3(1−
√

1/2)(k2 −Q1)− (1−
√

1/2)k2,

k3 := hf(xn +
h
2
, Y2), Y3 := Y2 + (1 +

√

1/2)(k3 −Q2),

Q3 := Q2 + 3(1 +
√

1/2)(k3 −Q2)− (1 +
√

1/2)k3,
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k4 := hf(xn + h, Y3), Y4 := Y3 +
1
6
(k4 − 2Q3),

Q0 := Q3 +
1
2
(k4 − 2Q3)−

1
2
k4,

yn+1 := Y4,

n := n + 1

skip to (∗).

In contrary to linear multi-step methods, Runge-Kutta methods do not demand
knowledge of initial values (except y(x0) = y0, what, by the way, defines Cauchy problem),
but for practical application are more complicated, because they demand m calculations
of function f values in every step.

10.8. Program realization of Runge-Kutta methods

In this section we present program realization of Euler-Cauchy method, improved
Eueler-Cauchy method, as well as method of fourth order (10.7.8) and Gill’s variant of
Runge-Kutta method. The obtained software will be tested on the example from section
10.3.6.

Program 10.8.1.

By subroutine EULCAU are realized Euler-Cauchy and improved Euler-Cauchy
method. Parameters in parameter list have the following meaning:

XP - start point of integration interval;
H - integration step;
N - integer, such that N + 1 is lenght of vector Y;
M - integer which defines way of construction of vector Y. Namely, in vector Y is

stored in turn every M-th value of solution obtained during integration process.
Y - vector containing solutions of length N+1, whereby Y(1) is given initial condition

y0, Y(2) is value of solution obtained by integration in point XP + M*H, etc.
FUN - name of function subroutine, which defines right-hand side of differential equa-

tion f(x, y);
K - integer with values K=1 and K=2, which governs integration according to Euler-

Cauchy and improved Euler-Cauchy method, respectively.
Subroutine EULCAU is of form:

SUBROUTINE EULCAU(XP,H,N,M,Y,FUN,K)
DIMENSION Y(1)
X=XP
Y1=Y(1)
NN=N+1
DO 10 I=2,NN
DO 20 J=1,M
Y0=Y1
Y1=FUN(X,Y0)
GO TO (1,2),K

1 Y1=Y0+H*FUN(X+0.5*H,Y0+0.5*H*Y1)
GO TO 20

2 Y1=Y0+H*(Y1+FUN(X+H,Y0+H*Y1))/2.
20 X=X+H
10 Y(I)=Y1

RETURN
END

C
FUNCTION FUN(X,Y)
FUN=X*X+Y
RETURN
END
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Main program and output listing are given in further text. As input parameters
for integration we have taken H=0.1, N=10, M=1, and in second case H=0.05, N=10, M=2.
Columns Y1N and Y2N in output listing give values for solution of given Cauchy problem,
according to regular and improved Euler-Cauchy method, respectively. In addition to
those columns, in output listing are given columns with corresponding errors (as relation
to exact solution, expressed in %)

C===================================================
C RESAVANJE DIF. JED. EULER-CAUCHYEVIM
C I POBOLJSANIM METODOM
C===================================================

EXTERNAL FUN
DIMENSION Y(100), Z(100)
F(X)=6.*EXP(X-1.)-X*X-2.*X-2.
OPEN(5,FILE=’EULCAU.OUT’)
OPEN(8,FILE=’EULCAU.IN’)
WRITE(5,10)

10 FORMAT(10X,’RESAVANJE DIF.JED.EULER-CAUCHYEVIM’
1 ’ I POBOLJSANIM METODOM’)

20 READ(8,25,END=99)XP,Y(1),H,N,M
25 FORMAT(3F6.1,2I3)

CALL EULCAU(XP,H,N,M,Y,FUN,1)
Z(1)=Y(1)
CALL EULCAU(XP,H,N,M,Z,FUN,2)
WRITE(5,30)H

30 FORMAT(1H0,30X,’(H=’,F6.4,’)’//15X,’XN’,8X,
1’Y1N’,4X,’GRESKA(%)’,5X,’Y2N’,4X,’GRESKA(%)’/)
NN=N+1
X=XP
DO 11 I=1,NN
G1=ABS((Y(I)-F(X))/F(X))*100.
G2=ABS((Z(I)-F(X))/F(X))*100.
WRITE(5,15)X,Y(I),G1,Z(I),G2

15 FORMAT(15X,F3.1,3X,F9.6,2X,F7.5,3X,F9.6,2X,
1 F7.5)

11 X=X+H*M
GO TO 20

99 CLOSE(5)
CLOSE(8)
STOP
END

RESAVANJE DIF.JED.EULER-CAUCHYEVIM I POBOLJSANIM METODOM
0 (H= .1000)

XN Y1N GRESKA(%) Y2N GRESKA(%)
1.0 1.000000 .00000 1.000000 .00000
1.1 1.220250 .06352 1.220500 .04304
1.2 1.486676 .11693 1.487203 .08157
1.3 1.806227 .16173 1.807059 .11576
1.4 2.186581 .19934 2.187750 .14599
1.5 2.636222 .23109 2.637764 .17274
1.6 3.164526 .25808 3.166479 .19650
1.7 3.781851 .28125 3.784260 .21773
1.8 4.499645 .30138 4.502557 .23685
1.9 5.330558 .31907 5.334026 .25422
2.0 6.288567 .33483 6.292649 .27013

0 (H= .0500)
XN Y1N GRESKA(%) Y2N GRESKA(%)
1.0 1.000000 .00000 1.000000 .00000
1.1 1.220824 .01655 1.220888 .01130
1.2 1.487963 .03046 1.488098 .02140
1.3 1.808391 .04213 1.808604 .03034
1.4 2.189811 .05192 2.190111 .03824
1.5 2.640738 .06019 2.641133 .04523
1.6 3.170581 .06721 3.171082 .05143
1.7 3.789740 .07324 3.790357 .05696
1.8 4.509705 .07848 4.510451 .06195
1.9 5.343177 .08309 5.344066 .06647
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2.0 6.304192 .08719 6.305238 .07061

Program 10.8.2.

According to formulas (10.7.8) for standard Runge-Kutta method of fourth degree,
the following subroutine RK4 is written:

SUBROUTINE RK4(X0,Y0,H,M,N,YVEK,F)
C=============================================
C METOD RUNGE-KUTTA CETVRTOG REDA
C=============================================

DIMENSION YVEK(1)
T=H/2.
X=X0
Y=Y0
DO 20 I=1,N
DO 10 J=1,M
A=F(X,Y)
B=F(X+T,Y+T*A)
C=F(X+T,Y+T*B)
D=F(X+H,Y+H*C)
X=X+H

10 Y=Y+H/6.*(A+2.*B+2.*C+D)
20 YVEK(I)=Y

RETURN
END

Parameters in list of subroutine parameters are of following meaning:
X0,Y0 - define given initial condition (Y0=y(X0);
H - step of integration;
M, N - integers with meanings similar to ones in subroutine EULCAU;
YVEK - vector of length N which is obtained as result of numerical integration, whereby

Y(1) is value obtained in point X0+M*H, Y(2) value in point X0+2M*H, etc.
F - name of function subroutine which defines right-hand side of differential equation

f(x, y).
Main program is of form:

C==========================================
C RESAVANJE DIF.JED. METODOM RUGE-KUTTA
C==========================================

EXTERNAL FUN
DIMENSION Y (100)
F(X)=6.*EXP(X-1.)-X*X-2.*X-2.
OPEN(5,FILE=’RK4.OUT’)
OPEN(8,FILE=’RK4.IN’)
WRITE(5,10)

10 FORMAT (14X,’RESAVANJE DIF.JED. METODOM’,
1 ’ RUNGE-KUTTA’)

20 READ (8,5,END=99)X0,Y0,H,N,M
5 FORMAT (3F6.1,2I3)

CALL RK4(X0,Y0,H,M,N,Y,FUN)
G=0.
WRITE (5,25) H,X0,Y0,G

25 FORMAT( 28X,’(H=’,F6.4,’)’//15X,’XN’,13X,’YN’,
110X,’GRESKA(%)’//15X,F3.1,8X,F9.6,7X,F7.5)
X=X0
DO 11 I=1,N
X=X+H*M
G=ABS((Y(I)-F(X))/F(X))*100.

11 WRITE (5,15)X,Y(I),G
15 FORMAT (15X,F3.1,8X,F9.6,7X,F7.5)

GO TO 20
99 CLOSE(5)
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CLOSE(8)
STOP
END

C
FUNCTION FUN(X,Y)
FUN=X*X+Y
RETURN
END

Taking H=0.1, N=10, M=1 the following results are obtained:

RESAVANJE DIF.JED. METODOM RUNG-KUTTA
(H= .1000)

XN YN GRESKA(%)
1.0 1.000000 .00000
1.1 1.221025 .00002
1.2 1.488416 .00005
1.3 1.809152 .00007
1.4 2.190946 .00009
1.5 2.642325 .00011
1.6 3.172709 .00012
1.7 3.792512 .00014
1.8 4.513240 .00015
1.9 5.347611 .00017
2.0 6.309682 .00018

Program 10.8.3.

The Gill’s variant of Runge-Kutta method is realized in double precision. Parame-
ters in parameter list of subroutine GILL, X0, H, N, M, Y, FUN have the same meaning
as the parameters HP, H, N, M, Y, FUN in subroutine EULCAU, respectively. Note that
this subroutine is realized in such a way that the optimization of number of variables
has been performed.

Input parameters are taken like in program 10.8.1.

C==================================================
C RESAVANJE DIF.JED. METODOM RUNGE-KUTTA
C (GILLOVA VARIJANTA)
C==================================================

EXTERNAL FUN
REAL*8 Y(100),F,FUN,X0,X,H,G
F(X)=6.*DEXP(X-1.)-X*X-2.*X-2.
OPEN(8,FILE=’GILL.IN’)
OPEN(5,FILE=’GILL.OUT’)
WRITE(5,10)

10 FORMAT(8X,’RESAVANJE DIF.JED.METODOM’
1’ RUNGE-KUTTA (GILLOVA VARIJANTA)’ )

20 READ(8,25,END=99)X,Y(1),H,N,M
25 FORMAT(3F6.1,2I3)

X0=X
CALL GILL(X0,H,N,M,Y,FUN)
WRITE(5,30)H

30 FORMAT(/28X,’(H=’,F6.4,’)’//15X,’XN’,13X,’YN’,
1 10X,’GRESKA(%)’/)
NN=N+1
DO 11 I=1,NN
G=DABS((Y(I)-F(X))/F(X))*100.
WRITE(5,15)X,Y(I),G

15 FORMAT(15X,F3.1,8X,F9.6,6X,D10.3)
11 X=X+H*M

GO TO 20
99 CLOSE(5)

CLOSE(8)
STOP
END

C
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C
SUBROUTINE GILL(X0,H,N,M,Y,FUN)
REAL*8 Y(1),H,FUN,X0,Y0,Q,K,A,B
B=DSQRT(0.5D0)
Q=0.D0
Y0=Y(1)
NN=N+1
DO 10 I=2,NN
DO 20 J=1,M
K=H*FUN(X0,Y0)
A=0.5*(K-2.*Q)
Y0=Y0+A
Q=Q+3.*A-0.5*K
K=H*FUN(X0+H/2.,Y0)
A=(1.-B)*(K-Q)
Y0=Y0+A
Q=Q+3.*A-(1.-B)*K
K=H*FUN(X0+H/2,Y0)
A=(1.+B)*(K-Q)
Y0=Y0+A
Q=Q+3.*A-(1.+B)*K
K=H*FUN(X0+H,Y0)
A=(K-2.*Q)/6.
Y0=Y0+A
Q=Q+3.*A-K/2.

20 X0=X0+H
10 Y(I)=Y0

RETURN
END

C
FUNCTION FUN(X,Y)
REAL*8 FUN,X,Y
FUN=X*X+Y
RETURN
END

RESAVANJE DIF.JED.METODOM RUNGE-KUTTA (GILLOVA VARIJANTA)
(H= .1000)

XN YN GRESKA(%)
1.0 1.000000 .000D+00
1.1 1.221025 .246D-04
1.2 1.488416 .460D-04
1.3 1.809152 .647D-04
1.4 2.190946 .808D-04
1.5 2.642325 .949D-04
1.6 3.172709 .107D-03
1.7 3.792512 .118D-03
1.8 4.513240 .128D-03
1.9 5.347611 .136D-03
2.0 6.309682 .144D-03

(H= .0500)
XN YN GRESKA(%)
1.0 1.000000 .000D+00
1.1 1.221025 .162D-05
1.2 1.488417 .303D-05
1.3 1.809153 .425D-05
1.4 2.190948 .531D-05
1.5 2.642327 .623D-05
1.6 3.172713 .704D-05
1.7 3.792516 .775D-05
1.8 4.513245 .838D-05
1.9 5.347618 .894D-05
2.0 6.309690 .946D-05
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10.9. Solution of system of equations and equations of higher order

Methods considered in previous sections can be generalized in that sense to be
applicable in solution of Cauchy problem for system of p equations of first order

y′i = fi(x; y1, . . . , yp), yi(x0) = yi0 (i = 1, . . . , p).(10.9.1)

In this case, system of equations (10.9.1) shell be represented in vector form

~y ′ = ~f(x, ~y), ~y(x0) = ~y0,(10.9.2)

where

~y =









y1

y2
...

yn









, ~y0 =









y10

y20
...

yp0









, ~f(x, ~y) =







f1(x; y1, . . . , yp)
...

fp(x; y1, . . . , yp)





 .

It is of our interest the solution of Cauchy problem for differential equations of higher
order. Note, nevertheless, that this problem can be reduced to previous one. Namely,
let be given the differential equation of order p

y(p) = f(x, y, y′, . . . , y(p−1))(10.9.3)

with initial conditions

y(i)(x0) = yi0 (i = 0, 1, . . . , p− 1).(10.9.4)

Then, by substitution
z1 = y, z2 = y′, . . . , zp = y(p−1),

equation (10.9.3) with conditions (10.9.4), reduces to system

z′1 = z2

z′1 = z2

...
z′p−1 = zm

z′p = f(x; z1, z2, . . . , zp),

with conditions zi(x0) = zi0 = yi0 (i = 1, . . . , p).
Linear multi-step methods considered up to now, can be formally generalized to

vector form
k

∑

i=0

αi~yn+i = h
k

∑

i=0

βi ~fn+i,

where ~fn+i = ~f(xn+i, ~yn+i), and then as such can be applied to solution of Cauchy problem
(10.9.2).

Also, the Runge-Kutta methods for solution of Cauchy problem (10.9.2) are of form

~yn+1 − ~yn = h~Φ(xn, ~yn, h),

where
~ψ(x, ~y, h) =

m
∑

i=1

ci~ki,

~k1 = ~f(x, ~y),
~ki = ~f(x + aih, ~y +~bih)

ai =
i−1
∑

j=1

αij , ~bi =
i−1
∑

j=1

αij~kj (i = 2, . . . , m).
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All analyses given in previous sections can formally be translated to noted vector
methods.

As an example, realize standard Runge-Kutta method of forth order (10.7.8) for
solving of system of two differential equations

y′ = f1(x, y, z), z′ = f2(x; y, z),

with conditions y(x0) = y0 and z(x0) = z0.
The corresponding subroutine is of form:

SUBROUTINE RKS(XP,XKRAJ,YP,ZP,H,N,YY,ZZ)
REAL KY1,KY2,KY3,KY4,KZ1,KZ2,KZ3,KZ4
DIMENSION YY(1),ZZ(1)
K=(XKRAJ-XP)/(H*FLOAT(N))
N1=N+1
X=XP
Y=YP
Z=ZP
T=H/2.
YY(1)=Y
ZZ(1)=Z
DO 6 I=2,N1
DO 7 J=1,K
KY1=FUN(1,X,Y,Z)
KZ1=FUN(2,X,Y,Z)
KY2=FUN(1,X+T,Y+T*KY1,Z+T*KZ1)
KZ2=FUN(2,X+T,Y+T*KY1,Z+T*KZ1)
KY3=FUN(1,X+T,Y+T*KY2,Z+T*KZ2)
KZ3=FUN(2,X+T,Y+T*KY2,Z+T*KZ2)
KY4=FUN(1,X+H,Y+H*KY3,Z+H*KZ3)
KZ4=FUN(2,X+H,Y+H*KY3,Z+H*KZ3)
Y=Y+H*(KY1+2.*(KY2+KY3)+KY4)/6.
Z=Z+H*(KZ1+2.*(KZ2+KZ3)+KZ4)/6.

7 X=X+H
YY(I)=Y

6 ZZ(I)=Z
RETURN
END

Using this subroutine we solved system of equations

y′ = xyz, z′ = xy/z,

under conditions y(1) = 1/3 and z(1) = 1 on segment [1, 2.5] taking for integration step
h = 0.01, and printing on exit x with step 0.1 and corresponding values of y, yT , z, zT ,
where yT and zT are exact solutions of this system, given with

yT =
72

(7− x2)3
and zT =

6
7− x2 .

The corresponding program and output listing are of form:

C====================================================
C RESAVANJE SISTEMA DIF. JED. METODOM RUNGE-KUTTA
C====================================================

DIMENSION YT(16),ZT(16),YY(16),ZZ(16),X(16)
YEG(P)=72./(7.-P*P)**3
ZEG(P)=6./(7.-P*P)
OPEN(8,FILE=’RKS.IN’)
OPEN(5,FILE=’RKS.OUT’)
READ(8,15)N,XP,YP,ZP,XKRAJ

15 FORMAT(I2,4F3.1)
YP=YP/3.
H=0.1
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N1=N+1
DO 5 I=1,N1
X(I)=XP+H*FLOAT(I-1)
YT(I)=YEG(X(I))

5 ZT(I)=ZEG(X(I))
WRITE(5,22)
H=0.01
CALL RKS(XP,XKRAJ,YP,ZP,H,N,YY,ZZ)
WRITE(5,18)H,(X(I),YY(I),YT(I),ZZ(I),ZT(I),

1 I=1,N1)
18 FORMAT(//7X,’KORAK INTEGRACIJE H=’,F6.3//7X,

1’X’,11X,’Y’,10X,’TACNO’,11X,’Z’,10X,’ZTACNO’//
2(F10.2,4F14.7))

22 FORMAT(1H1,9X,’RESAVANJE SISTEMA SIMULTANIH’,
1’ DIFERENCIJALNIH JEDNACINA’//33X,’Y’’=XYZ’//
1 33X, ’Z’’=XY/Z’)
CLOSE(5)
CLOSE(8)
STOP
END

C
FUNCTION FUN(J,X,Y,Z)
GO TO (50,60),J

50 FUN=X*Y*Z
RETURN

60 FUN=X*Y/Z
RETURN
END

1 RESAVANJE SISTEMA SIMULTANIHDIFERENCIJALNIH JEDNACINA
Y’=XYZ
Z’=XY/Z

KORAK INTEGRACIJE H= .010
X Y TACNO Z ZTACNO
1.00 .3333333 .3333333 1.0000000 1.0000000
1.10 .3709342 .3709342 1.0362690 1.0362690
1.20 .4188979 .4188979 1.0791370 1.0791370
1.30 .4808936 .4808935 1.1299430 1.1299430
1.40 .5623943 .5623943 1.1904760 1.1904760
1.50 .6718181 .6718181 1.2631580 1.2631580
1.60 .8225902 .8225904 1.3513510 1.3513510
1.70 1.0370670 1.0370680 1.4598540 1.4598540
1.80 1.3544680 1.3544680 1.5957440 1.5957450
1.90 1.8481330 1.8481340 1.7699110 1.7699110
2.00 2.6666650 2.6666670 2.0000000 2.0000000
2.10 4.1441250 4.1441260 2.3166020 2.3166020
2.20 7.1444800 7.1444920 2.7777760 2.7777780
2.30 14.3993600 14.3993900 3.5087690 3.5087710
2.40 37.7628900 37.7631300 4.8387000 4.8387110
2.50 170.6632000 170.6667000 7.9999230 8.0000000

10.10. Contour problems

In this section we will point out to difference method for solution contour problem

y′′ + p(x)y′ + q(x)y = f(x); y(a) = A, y(b) = B,(10.10.1)

where functions p, q, f are continuous on [a, b].
Let us divide segment [a, b] to N + 1 subsegments of length h =

b− a
N + 1

, so that xn =

a + nh (n = 0, 1, ..., N + 1). In points xn (n = 1, . . . , N) we approximate the differential
equation from (10.10.1) with

(10.10.2) yn+1 − 2yn + Yn−1

h2 + pn
yn+1 − yn−1

2h
+ qnyn = fn (n = 1, . . . , N),

where pn ≡ p(xn), qn ≡ q(xn), fn ≡ f(xn).
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If we involve substitutions

an = 1− h
2
pn, bn = h2qn − 2, cn = 1 +

h
2
pn,

(10.10.2) can be represented in form

anyn−1 + bnyn + cnyn+1 = h2fn (n = 1, . . . , N).(10.10.3)

In regards to contour conditions y0 = A and YN+1 = B, we have the problem of solving
the system of linear equations T~y = ~d, where

~y =









y1

y2
...

yN









, ~d =









h2f1 −Aa1

h2f2
...

h2fN −BcN









, T =









b1 c1 0 . . . 0
a2 b2 c2 0
...
0 0 0 . . . bN









.

System matrix is tri-diagonal. For solving of this system it is convenient to perform
decomposition of matrix T as T=LR (see chapter 2), whereby the problem is reduced
to successive solution of two triangular systems of linear equations. This procedure for
solution contour problem (10.10.1), is known as matrix factorization.

The following program is written in accordance to explained procedure.

DIMENSION A(100),B(100),C(100),D(100)
C===================================================
C MATRICNA FAKTORIZACIJA ZA RESAVANJE
C KONTURNIH PROBLEMA KOD LINEARNIH
C DIFERENCIJALNIH JEDNACINA II REDA
C Y’’+ P(X)Y’+ Q(X)Y = F(X)
C Y(DG) = YA, Y(GG) = YB
C ==================================================

OPEN(8,FILE=’KONTUR.IN’)
OPEN(7,FILE=’KONTUR.OUT’)
READ(8,5) DG,YA,GG,YB

5 FORMAT(4F10.5)
C UCITAVANJE BROJA MEDJUTACAKA
10 WRITE(*,14)
14 FORMAT(1X,’UNETI BROJ MEDJUTACAKA’

1’ U FORMATU I2’/ 5X,’(ZA N=0 => KRAJ)’)
READ(5,15) N

15 FORMAT(I2)
N1=N+1
IF(N.EQ.0) GO TO 60
H=(GG-DG)/FLOAT(N1)
HH=H*H
X=DG
DO 20 I=1,N
X=X+H
Y=H/2.*PQF(X,1)
A(I)=1.-Y
C(I)=1.+Y
B(I)=HH*PQF(X,2)-2.

20 D(I)=HH*PQF(X,3)
D(1)=D(1)-YA*A(1)
D(N)=D(N)-YB*C(N)
C(1)=C(1)/B(1)
DO 25 I=2,N
B(I)=B(I)-A(I)*C(I-1)

25 C(I)=C(I)/B(I)
D(1)=D(1)/B(1)
DO 30 I=2,N

30 D(I)=(D(I)-A(I)*D(I-1))/B(I)
NM=N-1
DO 35 I=1,NM
J=NM-I+1
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35 D(J)=D(J)-C(J)*D(J+1)
WRITE(7,40)N,(I,I=1,N1)

40 FORMAT(///5X,’BROJ MEDJUTACAKA N=’
1 ,I3///5X,’I’,6X,’O’,9I10)
DO 45 I=1,N
C(I)=DG+H*FLOAT(I)

45 B(I)=PQF(C(I),4)
WRITE(7,50)DG,(C(I),I=1,N),GG
WRITE(7,55)YA,(D(I),I=1,N),YB
WRITE(7,65)YA,(B(I),I=1,N),YB

50 FORMAT(/5X,’X(I)’,10(F6.2,4X))
55 FORMAT(/5X,’Y(I)’,10F10.6)
65 FORMAT(/5X,’YEGZ’,10F10.6)

GO TO 10
60 CLOSE(7)

CLOSE(8)
STOP
END

Note that this program is so realized that number of inner points N is read on
input. In case when N = 0 program ends. Also, in program is foreseen tabulating of
exact solution in observing points, as control. It is clear that last has meaning for
scholastic examples when solution is known. So, for example, for contour problem

y′′ − 2xy′ − 2y = −4x; y(0) = 1, y(1) = 1 + e ∼= 3.7182818,

the exact solution is y = x + exp(x2).
For this contour problem function subroutine for defining functions p, q, f , as for as

for exact solution, is named PQF. In case N=4, we got the results given in continuation.

FUNCTION PQF(X,M)
GO TO (10,20,30,40),M

10 PQF=-2.*X
RETURN

20 PQF=-2.
RETURN

30 PQF=-4.*X
RETURN

40 PQF=X+EXP(X*X)
RETURN
END

BROJ MEDJUTACAKA N= 4
I O 1 2 3 4 5

X(I) .00 .20 .40 .60 .80 1.00
Y(I) 1.000000 1.243014 1.576530 2.035572 2.695769 3.711828
YEGZ 1.000000 1.240811 1.573511 2.033329 2.696481 3.711828

10.11. Packages for ODEs

Numerous libraries and software packages are available for integrating initial-value
ordinary differential equations. Many work stations and main frame computers have
such libraries attached to their operating systems.

Many commercial software packages contain routines for integrating initial-value
ODEs. One of the oldest and very known among senior scientist is SSP (Scientific
Subroutine Package) of IBM. For ODEs it has subroutines RK1 (integral of first-order
differential equation by Runge-Kutta method), RK2 (integral of first-order differential
equation by Runge-Kutta method in tabulated form) using in both subroutines fourth
order Runge-Kutta method, and RKGS (solution of system of first-order differential equa-
tions with given initial values by the Runge-Kutta method) using evaluation by means
of fourth order Runge-Kutta formulae in the modification due to Gill. Some of the
more prominent packages are Matlab and Mathcad. More sophisticated packages, such
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as IMSL, Mathematica, and Macsyma contain also algorithms for integrating initial-value
ODEs. The book Numerical Recipes([12]) contains numerous subroutines for integrat-
ing initial-value ordinary differential equations and the book Numerical Methods for
Engineers and Scientists([3]) program code for solving single first-order ODEs, higher
order ODEs, and systems of first-order ODEs, by using single-point methods, extrapola-
tion methods, and multi-point methods (see Chapter 7, One-Dimensional Initial-Value
Ordinary Differential Equations).
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