
Faculty of Civil Engineering Faculty of Civil Engineering and Architecture
Belgrade Nǐs
Master Study Doctoral Study
COMPUTATIONAL ENGINEERING

LECTURES

LESSON VI

6. Nonlinear Equations and Systems

6.1. Nonlinear Equations

6.1.0. Introduction

We consider that most basic of tasks, solving equations numerically. While most
equations are born with both a right-hand side and a left-hand side, one traditionally
moves all terms to the left, leaving

(6.1.0.1) f(x) = 0

whose solution or solutions are desired. When there is only one independent variable, the
problem is one-dimensional, namely to find the root or roots of a function. With more
than one independent variable, more than one equation can be satisfied simultaneously.
You likely once learned the implicit function theorem which (in this context) gives us
the hope of satisfying n equations in n unknowns simultaneously. Note that we have
only hope, not certainty. A nonlinear set of equations may have no (real) solutions at
all. Contrariwise, it may have more than one solution. The implicit function theorem
tells us that generically the solutions will be distinct, pointlike, and separated from each
other. But, because of nongeneric, i.e., degenerate, case, one can get a continuous family
of solutions. In vector notation, we want to find one or more n-dimensional solution
vectors ~x such that

(6.1.0.2) ~f(~x) = ~0

where ~f is the n-dimensional vector-valued function whose components are the individ-
ual equations to be satisfied simultaneously. Simultaneous solution of equations in n
dimensions is much more difficult than finding roots in the one-dimensional case. The
principal difference between one and many dimensions is that, in one dimension, it is
possible to bracket or ”trap” a root between bracketing values, and then find it out di-
rectly. In multidimensions, you can never be sure that the root is there at all until you
have found it. Except in linear problems, root finding invariably proceeds by iteration,
and this is equally true in one or in many dimensions. Starting from some approximate
trial solution, a useful algorithm will improve the solution until some predetermined
convergence criterion is satisfied. For smoothly varying functions, good algorithms will
always converge, provided that the initial guess is good enough. Indeed one can even
determine in advance the rate of convergence of most algorithms. It cannot be overem-
phasized, however, how crucially success depends on having a good first guess for the

85

86 Numerical Methods in Computational Engineering

solution, especially for multidimensional problems. This crucial beginning usually de-
pends on analysis rather than numerics. Carefully crafted initial estimates reward you
not only with reduced computational effort, but also with understanding and increased
self-esteem. Hammings motto, ”the purpose of computing is insight, not numbers,”
is particularly apt in the area of finding roots. One should repeat this motto aloud
whenever program converges, with ten-digit accuracy, to the wrong root of a problem,
or whenever it fails to converge because there is actually no root, or because there is
a root but initial estimate was not sufficiently close to it. For one-dimensional root
finding, it is possible to give some straightforward answers: You should try to get some
idea of what your function looks like before trying to find its roots. If you need to
mass-produce roots for many different functions, then you should at least know what
some typical members of the ensemble look like. Next, you should always bracket a root,
that is, know that the function changes sign in an identified interval, before trying to
converge to the roots value. Finally, one should never let iteration method get outside
of the best bracketing bounds obtained at any stage. We can see that some pedagogi-
cally important algorithms, such as secant method or Newton-Raphson, can violate this
last constraint, and are thus not recommended unless certain fixups are implemented.
Multiple roots, or very close roots, are a real problem, especially if the multiplicity is
an even number. In that case, there may be no readily apparent sign change in the
function, so the notion of bracketing a root and maintaining the bracket becomes diffi-
cult. We nevertheless insist on bracketing a root, even if it takes the minimum-searching
techniques to determine whether a tantalizing dip in the function really does cross zero
or not. As usual, we want to discourage the reader from using routines as black boxes
without understanding them.

There are two distinct phases in finding the roots of nonlinear equation (see [2], pp.
130-135):
(1) Bounding the solution, and
(2) Refining the solution.

In general, nonlinear equations can behave in many different ways in the vicinity of
a root.

(1) Bounding the solution

Bounding the solution involves finding a rough estimate of the solution that can
be used as the initial approximation, or the starting point, in a systematic procedure
that refines the solution to a specified tolerance in an efficient manner. If possible, it
is desirable to bracket the root between two points at which the value of the nonlinear
function has opposite signs. The bounding procedures can be:
1. Drafting the function,
2. Incremental search,
3. Previous experience or similar problem,
4. Solution of a simplified approximate model.

Drafting the function involves plotting the nonlinear function over the range of
interest. Spreadsheets generally have graphing capabilities, as does Mathematica, Matlab
and Mathcad. The resolution of the plots is generally not precise enough for accurate
result. However, they are accurate enough to bound the solution. The plot of the
nonlinear function displays the behavior of nonlinear equation and gives view of scope
of problem.

An incremental search is conducted by starting at one end of the region of interest
and evaluating the nonlinear function with small increments across the region. When
the value of the function changes the sign, it is assumed that a root lies in that interval.
Two end points of the interval containing the root can be used as initial guesses for a

Lesson VI - Nonlinear Equations and Systems 87

refining method (second phase of solution). If multiple roots are suspected, one has to
check for sigh changes in the derivative of the function between the ends of the interval.

(2) Refining the solution

Refining the solution involves determining the solution to a specified tolerance by
an efficient procedure. The basic methods for refining the solution are:

2.1 Trial and error,
2.2 Closed domain methods (bracketing method),
2.3 Open domain methods.
Trial and error methods simply presume (guess) the root, x = α, evaluate f(α), and

compare to zero. If f(α) is close enough to zero, quit, if not guess another α and continue
until f(α) is close enough to zero.

Closed domain (bracketing methods) are methods that start with two values of x
which bracket the root, x = α, and systematically reduce the interval, keeping root inside
of brackets (inside of interval). Two most popular methods of that kind are:

2.2.1 Interval halving (bisection),
2.2.2 False position (Regula Falsi).
Bracketing methods are robust and reliable, since root is always inside of closed

interval, but can be slow to convergence.
Open domain methods do not restrict the root to remain trapped in a closed interval.

Therefore, there are not as robust as bracketing methods and can diverge. But, they
use information about the nonlinear function itself to come closer with estimation of
the root. Thus, they are much more efficient than bracketing methods.

Some general hints for root finding

Nonlinear equations can behave in various ways in the vicinity of a root. Algebraic
and transcendental equations may have simple real roots, multiple real roots, or complex
roots. Polynomials may have real or complex roots. If the polynomial coefficients are all
real, complex root occur in conjugate pairs. If the polynomial coefficients are complex,
single complex roots can occur.

There are numerous methods for finding the roots of a nonlinear equation. Some
general philosophy of root finding is given below.
1. Bounding method should bracket a root, if possible.
2. Good initial approximations are extremely important.
3. Closed domain methods are more robust than open domain methods because they

keep the root in a closed interval.
4. Open domain methods, when converge, in the general case converge faster than

closed domain methods.
5. For smoothly varying functions, most algorithms will always converge if the initial

approximation is close enough. The rate of convergence of most algorithms can be
determined in advance.

6. Many problems in engineering and science are well behaved and straightforward.
In such cases, a straightforward open domain method, such as Newton’s method,
or the secant method, can be applied without worrying about special cases and
strange behavior. If problems arise during the solution, then the peculiarities of the
nonlinear equation and the choice of solution method can be reevaluated.

7. When a problem is to be solved only once or a few times, then the efficiency of
method is not of major concern. However, when a problem is to be solved many
times, efficiency is of major concern.

8. Polynomials can be solved by any of the methods for solving nonlinear equations.
However, the special techniques applicable to polynomials should be considered.

88 Numerical Methods in Computational Engineering

9. If a nonlinear equation has complex roots, that has to be anticipated when choosing
a method.

10. Time for problem analysis versus computer time has to be considered during method
selection.

11. Generalizations about root-finding methods are generally not possible.
The root-finding algorithms should contain the following features:

1. An upper limit on the number of iterations.
2. If the method uses the derivative f ′(x), it should be monitored to ensure that it does

not approach zero.
3. A convergence test for the change in the magnitude of the solution, |xi+1−xi|, or the

magnitude of the nonlinear function, |xi+1|, has to be included.
4. When convergence is indicated, the final root estimate should be inserted into the

nonlinear function f(x) to guarantee that f(x) = 0 within the desired tolerance.

6.1.1. Newton’s method

Newton’s or often called Newton-Raphson method is basic method for determination
of isolated zeros of nonlinear equations.

Let isolated unique simple root x = a of equation (6.1.0.1) exist on segment [α, β] and
let f ∈ C[α, β]. Then, using Taylor development, we get

(6.1.1.1) f(a) = f(x0) + f ′(x0)(a− x0) + O
(

(a− x0)2
)

,

where ξ = x0 + θ(a − x0) (0 < θ < 1). Having in mind that f(a) = 0, by neglecting last
member on the right-hand side of (6.1.1.1), we get

a ∼= x0 −
f(x0)
f ′(x0)

.

If we denote left-hand side of last approximative equation with x1, we get

(6.1.1.2) x1 = x0 −
f(x0)
f ′(x0)

.

Here x1 represents the abscissa of intersection of tangent on the curve y = f(x) in the
point (x0, f(x0)) with x−axis (see Figure 6.1.1.1).

Figure 6.1.1.1 Figure 6.1.1.2

The equality (6.1.1.2) suggests the construction of iterative formula

(6.1.1.3) xk+1 = xk −
f(xk)
f ′(xk)

(k = 0, 1, . . .).

Lesson VI - Nonlinear Equations and Systems 89

known as Newton’s method or tangent method.
We can examine the convergence of iterative process (6.1.1.3) by introducing the

additional assumption for function f , namely, assume that f ∈ C2[α, β]. Because the
iterative function φ is at Newton’s method given as

φ(x) = x− f(x)
f ′(x)

,

by differentiation we get

(6.1.1.4) φ′(x) = 1− f ′(x2)− f(x)f ′′(x)
f ′(x)2

=
f(x)f ′′(x)

f ′(x)2
.

Note that φ(a) = a and φ′(a) = 0. Being, based on accepted assumptions for f , function
φ′ continuous on [α, β], and φ′(a) = 0, there exists a neighborhood of point x = a, denoted
as U(a) where it holds

(6.1.1.5) |φ′(x)| =
∣

∣

∣

∣

f(x)f ′′(x)
f ′(x)2

∣

∣

∣

∣

≤ q < 1.

Theorem 6.1.1.1. If x0 ∈ U(a), series {xk} generated using (6.1.1.3) converges to point x = a, whereby

(6.1.1.6) lim
k→+∞

xk+1 − a
(xk − a)2

=
f ′′(a)
2f ′(a)

.

(see [1], pp. 340-341).

Example 6.1.1.1.

Find the solution of equation

f(x) = x− cos x = 0

on segment [0, π/2] using Newton’s method

xk+1 = xk −
xk − cos xk

1 + sin xk
=

xk sin xk + cos xk

1 + sin xk
(k = 0, 1, . . .).

Note that f ′(x) = 1 + sin x > 0(∀x ∈ [0, π/2]). Starting with x0 = 1, we get the results given
in Table 6.1.1.

Table 6.1.1
k xk

0 1.000000
1 0.750364
2 0.739133
3 0.739085
4 0.739085

The last two iterations give solution of equation in consideration with six exact
figures.

Example 6.1.1.2.

By applying the Newton’s method on solution of equation f(x) = xn−a = 0 (a > 0, n >
1) we obtain the iterative formula for determination of n-th root of positive number a

xk+1 = xk −
xn

k − a
nxn−1

k

=
1
n

{

(n− 1)xk +
a

xn−1
k

}

(k = 0, 1, . . .).

90 Numerical Methods in Computational Engineering

A special case of this formula, for n = 2 gives as a result square root.
At application of Newton method it is often problem how to chose initial value of

x0 in order series {xk}k∈N to be monotonous. One answer to this question was given by
Fourier. Namely, if f ′′ does not change a sign on [α, β] and if x0 is chosen in such a way
that f(x0)f ′′(x0) > 0, the series {xk}k∈N will be monotonous. This statement follows from
(6.1.1.4).

Based on Theorem 6.1.1.1 we conclude that Newton’s method applied to determi-
nation of simple root x = a has square convergence if f ′′(a) 6= 0. In this case factor of
convergence (asymptotic constant of error) is

C2 =
∣

∣

f ′′(a)
2f ′(a)

∣

∣.

The case f ′′(a) is specially to be analyzed. Namely, if we suppose that f ∈ C3[α, β] one
can prove that

lim
k→+∞

xk+1 − a
(xk − a)3

=
f ′′′(a)
3f ′(a)

.

Example 6.1.1.3.

Consider the equation
f(x) = x3 − 3x2 + 4x− 2 = 0.

Because of f(0) = −2 and f(1.5) = 0.625 we conclude that on segment [0, 1.5] this equation
has a root. On the other hand, f ′(x) = 3x2 − 6x + 4 = 3(x − 1)2 + 1 > 0, what means that
the root is simple, enabling application of Newton’s method. Starting with x0 = 1.5, we
get the results in Table 6.1.2.

Table 6.1.2
k xk

0 1.5000000
1 1.1428571
2 1.0054944
3 1.0000003

The exact value for root is a = 1, because f(x) = (x− 1)3 + (x− 1).

In order to reduce number of calculations, it is often used the following modification
of Newton method

xk+1 = xk −
f(xk)
f ′(x0)

(k = 0, 1, . . .).

Geometrically, xk+1 represents abscissa of intersection of x-axes and straight line passing
through point (xk, f(xk)) and being parallel to tangent of curve y = f(x) in the point
(x0, f(x0)) (see Figure 6.1.1.2).

Iterative function of such modified Newton’s method is

φ1(x) = x− f(x)
f ′(x0)

.

Because of φ1(a) = a and φ′1(a) = 1− f ′(a)
f ′(x0)

, we conclude that method has order of conver-

gence one, i.e. it holds

xk+1 − a ∼
(

1− f ′(a)
f ′(x0)

)

(xk − a) (k → +∞),

Lesson VI - Nonlinear Equations and Systems 91

whereby the condition
∣

∣

∣

∣

1− f ′(a)
f ′(x0)

∣

∣

∣

∣

≤ q < 1,

is analogous to condition (6.1.1.5)
Newton’s method can be considered as special case of so known generalized Newton’s

method

(6.1.1.8) xk+1 = xk −
ψ(xk)f(xk)

ψ ′(xk)f(xk) + ψ(xk)f ′(xk)
(k = 0, 1, . . .),

where ψ is given differentiable function.
For ψ(x) = 1 , (6.1.1.8) reduces to to Newton’s method (6.1.1.3).
For ψ(x) = xp, where p parameter, from (6.1.1.8) it follows the formula

xk+1 = xk −
f(xk)

f ′(xk) + p
xk

f(xk)
(k = 0, 1, . . .),

i.e.

xk+1 = xk

{

1− f(xk)
xkf ′(xk) + pf(xk)

}

(k = 0, 1, . . .).(6.1.1.9)

A special case of this method, for p = 1− n is known as method of Tihonov ([7]), for the
case when f is algebraic polynomial of degree n.

The following modification of Newton’s method, containing successive application
of formulas

(6.1.1.10) yk = xk −
f(xk)
f ′(xk)

, xk+1 = yk −
f(yk)
f ′(xk)

(k = 0, 1, . . .).

is rather often applied.
Similar to proof of Theorem 6.1.1.1, the following standings

lim
k→+∞

xk+1 − a
(yk − a)(xk − a)

=
f ′′(a)
f ′(a)

and

lim
k→+∞

xk+1 − a
(xk − a)3

=
1
2
(f ′′(a)

f ′(a)
)2

,

where lim
k→+∞

xk = a can be proved. Thus, the iterative process defined by formulas
(6.1.1.10) has a cubic convergence.

6.1.2. Newton’s method for multiple zeros

Consider the equation f(x) = 0, which has in [α, β] a multiple root x = a of multiplicity
m (≥ 2). Suppose that f ∈ Cm+1[α, β], so that

f(a) = f ′(a) = . . . = f (m−1)(a) = 0, f (m)(a) 6= 0.

Namely, in this case f can be given in form

(6.1.2.1) f(x) = (x− a)mg(x)

where g ∈ Cm+1[α, β] and g(a) 6= 0.
From (6.1.2.1) it follows

f ′(x) = m(x− a)m−1g(x) + (x− a)mg′(x)

and

92 Numerical Methods in Computational Engineering

∆(x) =
f(x)
f ′(x)

=
(x− a)g(x)

mg(x) + (x− a)g′(x)
(x 6= a).

If we put ∆(a) def= lim
x→a

∆(x), then ∆(a) = 0.
The iteration function of Newton’s method, applied to determination of multiple

root, based on previous, becomes

Φ(x) = x− (x− a)g(x)
mg(x) + (x− a)g′(x)

.

Because of Φ(a) = a, Φ′(a) = 1 − 1
m

,
1
2
≤ Φ′(a) < 1 (m ≥ 2) and Φ′ being continuous

function, it follows that there exists neighborhood of root x = a in which |Φ′(x)| ≤ q < 1,
wherefrom we conclude that Newton’s method in this case is also convergent, but with
degree of convergence 1.

If we know in advance order of multiplicity of root, then Newton method can be
modify in such a way that it has order of convergence 2. Namely, one should

(6.1.2.2) xk+1 = xk −m
f(xk)
f ′(xk)

(k = 0, 1, . . .).

Remark 6.1.2.1.

Formally, the formula (6.1.2.2) is Newton’s method applied to solving the equation

F (x) = m
√

f(x) = 0.

Theorem 6.1.2.1. If x0 is chosen enough close to root x = a with order of multiplicity m, then series
{xk}k∈N0 defined by (6.1.2.2) converges to a, whereby

xk+1 − a
(xk − a)2

∼ 1
m(m + 1)

· f (m+1)(a)
f (m)(a)

(k → +∞).

Proof of this theorem is to be found, for example, in [8].
In the case when the order of multiplicity m is unknown, then in spite of equation

f(x) = 0 one can solve the equation f(x)
f ′(x)

= 0, which all roots are simple. Newton’s

method applied to this equation gives the formula

xk+1 = xk −

[f(x)
f ′(x)

(f(x)
f ′(x)

)′

]

x=xk

(k = 0, 1, . . .),

i.e. formula

xk+1 = xk −
f(xk)f ′(xk)

f ′(xk)2 − f(xk)f ′′(xk)
(k = 0, 1, . . .),

with order of convergence 2. Note that this function could be obtained from (6.1.1.8) by
taking Ψ(x) = 1/f ′(x).

6.1.3. Secant method

By approximation of first derivative f ′(xk) in Newton’s method with divided differ-
ence f(xk)− f(xk−1)

xk − xk−1
one gets secant method

(6.1.3.1) xk+1 = xk −
xk − xk−1

f(xk)− f(xk−1)
f(xk) (k = 1, 2, . . .),

Lesson VI - Nonlinear Equations and Systems 93

which belongs to open domains methods (two steps method). For starting of iterative
process 6.1.3.1) two initial values x0 and x1 are needed. Geometrical interpretation of
secant method is given in Figure 6.1.3.1.

Let in segment [α, β] exist unique root x = a of equation f(x) = 0. For examination of
convergence of iterative process (6.1.3.1) suppose that f ∈ C2[α, β] and f ′(x) 6= 0 (∀x ∈ [α, β].

If we put ek = xk − a (k = 0, 1, . . .), from (6.1.3.1) it follows

(6.1.3.2) ek+1 = ek −
ek − ek−1

f(xk)− f(xk−1)
f(xk).

Figure 6.1.3.1 Figure 6.1.3.2

Being
f(xk) = f ′(a) ek +

1
2
f ′′(a)e2

k + O(e3
k)

and
f(xk)− f(xk−1)

ek − ek−1
= f ′(a) +

1
2
(ek + ek−1)f ′′(a) + O(e2

k−1),

by replacing in (6.1.3.2) we get

ek+1 = ek

(

1−
f ′(a) + 1

2ekf ′′(a) + O(e2
k)

f ′(a) + 1
2 (ek + ek−1)f ′′(a) + O(e2

k−1)

)

,

wherefrom it follows

ek+1 = ek

[

1−
(

1 +
1
2
ek

f ′′(a)
f ′(a)

+ O(e2
k)

)(

(1− 1
2
(ek + ek−1)

f ′′(a)
f ′(a)

+ O(e2
k−1)

)

]

,

i.e.

(6.1.3.3) ek+1 = ek ek−1
f ′′(a)
2f ′(a)

(1 + O(ek−1)).

In order to determine order of convergence and convergence factor, we put

(6.1.3.4) |ek+1| = Cr|ek|r |1 + O(ek)|.

Then, based on (6.1.3.3) and (6.1.3.4) we get

|ek+1| = Cr |ek|r |1 + O(ek)| = Cr(Cr|ek−1|r)r |1 + O(ek)|

= Cr |ek−1|r |ek−1| ·
∣

∣

∣

∣

f ′′(a)
2f ′(a)

∣

∣

∣

∣

· |1 + O(ek−1)|,

94 Numerical Methods in Computational Engineering

wherefrom it follows

r2 − r − 1 = 0 and Cr =
∣

∣

∣

∣

f ′′(a)
2f ′(a)

∣

∣

∣

∣

1/r

.

Order of convergence r we get as a positive solution of obtained quadratic equation,
i.e. r = 1

2 (1 +
√

5) ∼= 1.62. Factor of convergence is

Cr =
∣

∣

∣

∣

f ′′(a)
2f ′(a)

∣

∣

∣

∣

(
√

5−1)/2

.

Remark 6.1.3.1.

For the solution of equation of form

(6.1.3.5) x = g(x)

one can find in bibliography Weigstein’s method ([9]), where, starting from x0 the series
{xk}k∈N is to be generated using

(6.1.3.6)
x1 =g(x0)

xk+1 =g(xk)− (g(xk)− g(xk−1))(g(xk)− xk)
(g(xk)− g(xk−1))− (xk − xk−1)

(k = 1, 2, . . .)

It can be shown that this method is actually secant method with initial values x0 and
x1 = g(x0). Namely, if we present equation (6.1.3.5) in form

(6.1.3.7) f(x) = g(x)− x = 0,

by replacing (6.1.3.7) into (6.1.3.6) we get (6.1.3.1).
The secant method can be modified in such a way that

(6.1.3.8) xk+1 = xk −
xk − xk−1

f(xk)− f(x0)
f(xk) (k = 1, 2, . . .).

This method is often called regula falsi or false position method. Differently from secant
method, where is enough to take x1 6= x0, at this method one needs to take x1 and x0 on
different sides of root x = a. Geometric interpretation of false position method is given
in Figure 6.1.3.2.

Iterative function at modified secant method is

Φ(x) = x− x− x0

f(x)− f(x0)
f(x) =

x0f(x)− xf(x0)
f(x)− f(x0)

.

Supposing f ∈ C1[α, β], then

Φ′(x) =
f(x0)

f(x)− f(x0)

[

x− x0

f(x)− f(x0)
f ′(x)− 1

]

.

Because Φ(a) = a and Φ′(a) 6= 0, we conclude that iterative process (6.1.3.8), if converges,
has order of convergence 1. Condition of convergence is, in this case,

|Φ′(x)| ≤ q ≤ 1 (f(x) 6= f(x0)),

for every x ∈ [α, β] \ {x0}.

Lesson VI - Nonlinear Equations and Systems 95

Example 6.1.3.4.

Using convergence acceleration (see [1, Theorem 2.4.1, p. 197]) on the iterative
process 6.1.3.8, we get the iterative process of second order

xk+1 =
x0g(xk)− xkh(xk)

g(xk)− h(xk)
(k = 1, 2, . . .),

where g(x) =
f(x)− f(x0)

x− x0
and h(x) =

f ′(x)f(x0)
f(x)

.

Remark 6.1.3.2.

By replacing f ′(xk) in Newton’s method by finite difference in point xk, with step
h = f(xk), i.e.

f ′(xk) ∼=
f(xk + f(xk))− f(xk)

f(xk)

one gets Steffensen’s method

(6.1.3.9) xk+1 = xk −
f(xk)2

f(xk + f(xk))− f(xk)
(k = 0, 1, . . .).

Steffensen’s method is interesting because it has order of convergence 2, and thereby
iterative function

x → Φ(x) = x− f(x)2

f(x + f(x))− f(x)

does not contain derivative f ′.

6.1.4. Bisection method

Let on segment α, β exist isolated simple root x = a of equation

(6.1.4.1) f(x) = 0,

where f ∈ C[α, β]. Method of interval bisection for solution of equation (6.1.4.1) consists
in construction of series’ of intervals {(xk, yk)}k∈N such that

yk+1 − xk+1 =
1
2
(yk − xk), (k = 1, 2, . . .)

having thereby lim
k→+∞

xk = lim
k→+∞

yk = a. The noted process of construction of intervals
is interrupted when, for example, interval length becomes lesser than in advance given
small positive number ε. This method can be described with four steps:
I. k := 0, x1 = α, y1 = β;

II. k := k + 1, zk := 1
2 (xk + yk);

III. If
f(zk)f(xk) < 0 take xk+1 := xk, yk+1 := zk,

> 0 take xk+1 := zk, yk+1 := yk,

= 0 take a := zk; end of calculation

IV. If
|yk+1 − xk+1| ≥ ε go to II,

< ε zk+1 :=
1
2
(xk+1 + yk+1)

end of calculation.

Note that error estimation for approximation of zk+1 is

|zk+1 − a| ≤ 1
2k+1 (β − α).

96 Numerical Methods in Computational Engineering

6.1.5. Schröder Development

Let function f : [α, β] → R be differentiable and f ′(x) 6= 0 (∀x ∈ [α, β]). Consequently, f
is then strictly monotonous on [α, β] and there exists its inverse function F which is also
differentiable. Then

F ′(y) ==
dx
dy

=
1

f ′(x)
(y = f(x)).

If function f is two times differentiable on [α, β] then

F ′′(y) = − f ′′(x)
f ′(x)3

.

Finding the higher derivatives of function F , supposing that it is enough times dif-
ferentiable, could be very complicated. Being necessary for Schröder development, a
recursive procedure is suggested (see [1], pp. 353).

Suppose that function f is (n + 1) times differentiable on [α, β] , and that

(6.1.5.1) F (k)(y) =
Xk

(f ′)2k−1 (k = 1, . . . , n + 1),

where Xk is polynomial in f ′, f ′′, . . . , f (k) and f (i) ≡ f (i)(x) for i = 1, . . . , n + 1. By induction
one can prove the formula (6.1.5.1), where polynomial X is determined recursively

(6.1.5.2) Xk+1 = f ′Xk
′ − (2k − 1)Xkf ′′,

starting with X1 = 1 and X2 = −f ′′.
First five members of series {Xk} are

X1 = 1,

X2 = −f ′′,

X3 = −f ′f ′′′ + 3f ′′2

X4 = −f ′2f IV + 10f ′f ′′f ′′′ − 15f ′′3,

X5 = −f ′3fV + 15f ′2f ′′f IV + 10f ′2f ′′′2 − 105f ′f ′′2f ′′′ + 105f ′′4.

Suppose that function f has on segment [α, β] a simple zero x = a whose surrounding
denote with U(a). If we put h = − f(x)

f ′(x)
(x ∈ U(a)), then f(x) + hf ′(x) = 0, wherefrom we

have
a = F (0) = F (f + hf ′).

If f ∈ Cn+1[α, β], based on Taylor’s formula we have

a =
n

∑

k=0

1
k!

F (k)(y)(hf ′)k +
F (n+1)(y)
(n + 1)!

(hf ′)n+1,

where y = f + thf ′ = (1 − t)f = θf (t, θ ∈ (0, 1)). Finally, using (6.1.5.1) we get Schröder
development

a− x =
n

∑

k=1

1
k!

Xk

(

f ′

f ′
,
f ′′

f ′
, . . . ,

f (k)

f ′

)

hk + O(f(x)n+1

i.e.

a− x = h− f ′′

2f ′
h2 +

3f ′′2 − f ′f ′′′

6f ′2
h3(6.1.5.3)

+
10f ′f ′′f ′′′ − f ′2f IV − 15f ′′3

24f ′3
h4 + . . .

Lesson VI - Nonlinear Equations and Systems 97

6.1.6. Methods of higher order

In this section we will present some ways for obtaining iterative processes with order
of convergence greater than 2, supposing that equation

(6.1.6.1) f(x) = 0,

has on segment [α, β] unique simple root x = a, and that function f is enough times
differentiable on [α, β].

1. Using Schröder development, by taking finite number of first members on right
hand site of (6.1.5.3), we can get a number of iterative formulas.

Let
Φ2(x) = x + h = x− f(x)

f ′(x)
,

Φ3(x) = Φ2(x)− f(x)′′

2f ′(x)
h2 = x− f(x)

f ′(x)
− f ′′(x)f(x)2

2f ′(x)3
,

Φ4(x) = Φ3(x) +
3f ′′2 − f ′f ′′′

6f ′2
h3

= x− f(x)
f ′(x)

− f ′′(x)f(x)2

2f ′(x)3
− f(x)3

6f ′(x)4

(

3
f ′′(x)2

f ′(x)
− f ′′′(x)

)

,

etc.
Note that Φ2(x) is iteration function of Newton’s method.
Because h being in first iteration a− x (x → a), based on (6.1.5.3) we have

Φm(x)− a = O(hm) = O((x− a)m) (m = 2, 3, . . .),

when x → a, meaning that

(6.1.6.2) xk+1 = Φm(xk) (k = 0, 1, . . .),

applied to finding root of equation (6.1.6.2), has order of convergence at least m.
Formulas (6.1.6.2) are often called Chebyshev iterative formulas.
Using Hermite’s interpolation formulas (see Chapter 7) for function f in points

x = xk−1 and x = xk one can get the iterative formula of form (see [10])

(6.1.6.3) xk+1 = xk −
f(xk)
f ′(xk)

− f(xk)2

2f ′(xk)
f
′′
(xk) (k = 1, 2, . . .),

where f
′′
(xk) = − 6

ε2
k
(f(xk)− f(xk−1)) +

2
εk

(2f ′(xk) + f ′(xk−1)) and ε = xk − xk−1. Order of con-

vergence of this process is r = 1+
√

3. Iterative function of this process is one modification
of Chebyshev function Φ3.

In paper [11], Milovanović and Petković considered one modification of function Φ3

using approximation
f ′′(xk) ≈ f ′(xk + εk)− f ′(xk)

εk

whereby ε → 0 when k → +∞. The corresponding iterative process is

(6.1.6.4) xk+1 = xk −
f(x)
f ′(x)

− f(xk)2

2f ′(xk)3
· f ′(xk + εk)− f ′(xk)

εk
.

From asymptotic equation (see [1], pp. 357-358)

|ek+1| ∼
∣

∣

∣

∣

f ′′′(a)
4f ′(a)

∣

∣

∣

∣

|ek|2|ek−1|,

98 Numerical Methods in Computational Engineering

similar as at secant method, one finds order of convergence from equation r2− 2r− 1 = 0,
i.e. r = 1 +

√
2. Asymptotic error constant is Cr =

∣

∣

∣

∣

f ′′′(a)

4f ′(a)1/
√

2

∣

∣

∣

∣

.

Introducing approximations for f ′(x) and f ′′(x) of forms

(6.1.6.5)
f ′(x) ∼= f̄

′
(x) =

f(x + f(x))− f(x− f(x))
2f(x)

f ′′(x) ∼= f̄
′′
(x) =

f(x + f(x))− 2f(x) + f(x− f(x))
f(x)2

in paper [12] is presented the iterative function

Φ∗3(x) = x− f(x)
f̄ ′(x)

− f(x)2f̄ ′′(x)
f(x)2

,

and proven that order of convergence of this process is 3.
2. By using method for acceleration of iterative processes

xk+1 = xk −
xk − Φ(xk)

1− 1
r
Φ′(xk)

(k = 0, 1, . . .)

for Newton’s method Φ(x) = x− f(x)
f ′(x)

we get the method

xk+1 = xk −
2f(xk)f ′(xk)

2f ′(xk)2 − f(xk)f ′′(xk)
(k = 0, 1, . . .),

with order of convergence at least 3, known as Saleh method of tangent hyperbolas or
Halley’s method.

Using approximation (6.1.6.5), Milovanović and Kovačević in paper [12] considered
iterative function

Φ3(x) = x− 2f(x)f̄ ′(x)
2f̄ ′(x)2 − f(x)f̄ ′′(x)

,

which is one modification of Halley’s method (6.1.6.7) with cubic convergence.
Some more complicated iterative formulas of higher order can be found in ([1], pp.

360-365).

6.2. Systems of nonlinear equations

6.2.0. Introduction

System of nonlinear equations

(6.2.0.1) fi(x1, . . . , xn) = 0 (i = 1, . . . , n)

where fi : Rn → R (i = 1, . . . , n) are given functions, can be considered as special case of
operator equation

(6.2.0.2) Fu = θ,

where F is operator which maps Banach space X to Banach space Y , and θ null-vector.
Thus, X = Y = Rn, u = ~x = [x1 . . . xn]T , θ = [0 . . . 0]T ,

(6.2.0.3) Fu = ~f(~x) =

f1(x1, . . . , xn)
...

fn(x1, . . . , xn)

 .

Lesson VI - Nonlinear Equations and Systems 99

Basic method for solving operator equation (6.2.0.2) and also system of equations (6.2.0.1)
is Newton-Kantorowich (Newton-Raphson) method, which is generalization of Newton
method (6.1.1.3) .

6.2.1. Newton-Kantorowitch (Raphson) method

Basic iterative method for solving equation (6.2.0.2) is method of Newton-Kantoro-
wich, which generalizes classical Newton’s method. Fundamental results regarding ex-
istence and uniqueness of solutions of eq. (6.2.0.2) and convergence of the method are
given by L.V. Kantorowich (see [22]).

Suppose that eq. (6.2.0.2) has a solution u = a and operator F : X → Y is Fréchet
differentiable in convex neighbourhood D of point a. Method of Newton-Kantorowich
rely on linearization of eq. (6.2.0.2). Suppose that the approximative solution uk has
been found. Then, for obtaining the next approximation uk+1 replace eq. (6.2.0.2) with

(6.2.1.1) Fuk + F ′(uk)(u− uk) = θ.

If for operator F ′(uk) there exists inverse operator Γ(uk) = (F ′(uk))
−1, from (6.2.1.1) we obtain

the iterative method

(6.2.1.2) uk+1 = uk − Γ(uk)Fuk (k = 0, 1, . . .)

known as Newton-Kantorowich method. Starting value u0 for generating series {uk} is
taken from D, and its selection is very tough problem. Method (6.2.1.2) can be presented
as

uk+1 = Tuk (k = 0, 1, . . .),

where
Tu = u− Γ(u)Fu.

For developing a methods for solution of systems of nonlinear equations, we will induce
some crucial theorems without proofs (see [1], pp. 375 - 380].

Theorem 6.2.1.1. Let operator F be two times Fréchet differentiable on D, whereby for every u ∈ D
there exists operator Γ(u). If the operators Γ(u) and F ′′(u) are limited, and u0 ∈ D is close enough to
point a, the iterative process (6.2.1.2) has order of convergence at least two.

For usual consideration we suppose that D is a ball in K[u0, R], where u0 is starting
value of series {uk}k∈N0 .

If Lipschitz condition

(6.2.1.3) ||F ′(u) − F ′(v)|| ≤ L||u− v|| (u, v ∈ K[u0, R])

is fulfilled, from

Fu− Fv − F ′(v)(u− v) =

1
∫

0

[F ′v+t(u−v)) − F ′(v)](u− v)dt

follows the inequality

||Fu− Fv − F ′(v)(u− v)|| ≤ L
2

= ||u− v||2.

Theorem 6.2.1.2. Let operator F be Fréchet differentiable in the ball K[u0, R] and satisfies the condi-
tion (6.2.1.3) and let the nonequalities

(6.2.1.5) ||Γ0|| ≤ b0, ||Γ0Fu0|| ≤ η0, h0 = b0Lη0 ≤
1
2
,

100 Numerical Methods in Computational Engineering

where Γ0 = Γ(u0), hold. If

(6.2.1.6) R ≥ r0 =
1−

√
1− 2h0

h0
η0,

series {uk}k∈N0 , generating by means of (6.2.1.2) converges to solution a ∈ K[u0, r0] of equation (6.2.0.2).

For given series’ {bk}, {ηk}, {hk}, {rk} defined with

bk+1 =
bk

1− hk
, ηk+1 =

hk

2(1− hk)
ηk,

hk+1 = bk+1Lηk+1, rk =
1−

√

1− 2hk+1

hk+1

the existence of series {uk}k∈N0 is proven and the following relations

(6.2.1.7) ||Γ(uk)|| ≤ bk, ||Γ(uk)Fuk|| ≤ ηk, hk ≤
1
2

and

(6.2.1.8) K[uk, rk] ⊂ K[uk−1, rk−1].

hold.

Theorem 6.2.1.3. When conditions of previous theorem are fulfilled, then it holds

(6.2.1.9) ||uk − a|| ≤ 1
2k−1 (2h0)2

k−1η0 (k ∈ N).

In order to avoid determination of inverse operator Γ(u) = [F ′(u)]
−1 at every step,

method of Newton-Kantorowich can be modified in the following way

(6.2.1.10) uk+1 = uk − Γ0Fuk (k = 0, 1, 2, . . .),

where Γ0 = Γ(u0). By introducing the operator T

(6.2.1.11) Tu = u− Γ0Fu,

the modified method (6.2.1.10) can be given in the form

uk+1 = Tuk (k = 0, 1, 2, . . .).

Suppose that the following conditions are met:
a. Operator F is Fréchet-differentiable in the ball K[u0, R],
b. F ′(u) satisfies the condition (6.2.1.3),
c. Operator Γ0 exists and

||Γ0|| ≤ b0, ||Γ0Fu0|| ≤ η0.

Then, it holds the following

Theorem 6.2.1.4. If the following condition hold,

h0 = b0Lη0 <
1
2
, and r0 =

1−
√

1− 2h0

h0
η0 ≤ R

the series generated using (6.2.1.10) converges to solution a ∈ K[u0, r0] of equation (6.2.0.2).

It can be shown that iterative process (6.2.1.10) is of first order.

Lesson VI - Nonlinear Equations and Systems 101

Consider now system of nonlinear equations

(6.2.1.12) fi(x1, . . . , xn) = 0 (i = 1, 2, . . . , n).

Here is X = Y = Rn, u = ~x = [x1 . . . xn]T and F defined by (6.2.0.3). If F is Fréchet
differentiable operator, the

F ′(u) =

∂f1

∂x1
· · · ∂f1

∂xn
...

∂fn

∂x1
· · · ∂fn

∂xn

= W (~x),

i.e. W (~x) is Jacobian matrix for ~f . If det(W (~x)) 6= 0, i.e. if matrix W (~x) is regular, method
of Newton-Kantorowich for solving system of equations (6.2.1.12) is given as

(6.2.1.13) ~x (k+1) = ~x (k) −W−1(~x (k)) (k = 0, 1, . . .),

where ~x (k) = [x(k)
1 . . . x(k)

n]T . This method is often called Newton-Raphson method.
Method (6.2.1.13) can be obtained in a simpler way, by linearization of system of

equation (6.2.0.1) in neighborhood of approximation x (k). Let ~a = [a1 . . . an]T be exact
solution of this system. Using Taylor development for functions which appear in (6.2.0.1),
we get

fi(a1, . . . , an) = fi(x
(k)
1 , . . . , x(k)

n) +
∂fi

∂x1
(a1 − x(k)

1) + . . .

+
∂fi

∂xn
(an − x(k)

n) + r(k)
i (i = 1, . . . , n),

where partial derivatives on the right-hand side of given equations are calculated in
point ~x (k). r(k)

i represents corresponding residual in Taylor’s formula.
Because of fi(a1, . . . , an) = 0 (i = 1, . . . , n), previous system of equations can be repre-

sented in matrix form

~0 = ~f(~x (k)) + W (~x (k))(~a− (~x (k))) + ~r (k),

where ~r (k) = [r(k)
1 . . . r(k)

n]T . If Jacobian matrix for ~f is regular, then we have

~a = ~x (k) −W−1(~x (k))~f(~x (k))~r (k).

By neglecting the very last member on the right-hand size, in spite of vector ~a, we get
its new approximation, denoted with ~x (k+1). In this way, one gets (6.2.1.13).

As already noted, method (6.2.1.13) can be modified in the sense that inverse matrix
of W (~x) is not evaluated at every step, but only at first. Thus,

(6.2.1.14) ~x (k+1) = ~x (k) −W−1(~x (0)) (k = 0, 1, . . .).

Remark 6.2.1.1. Modified method (6.2.1.14) can be considered as simple iterative method

~x (k+1) = T~x (k) + Λ~f(~x (k)) (k = 0, 1, . . .).

with matrix Λ obtained from condition that derivative of T is null-operator, i.e. ~I + ΛW(~x (0)) is null-
matrix. If W(~x (0)) is regular matrix, then we have Λ = W−1(~x (0)).

Previous introductory theorems can be adapted for the case of system of nonlinear
equations, whereby the conditions for convergence of processes (6.2.1.13) and (6.2.1.14)
can be expressed in different ways, depending on introduced norms in X. For example,
taking for norm in Rn

||~x|| = ||~x||∞ = max
i
|xi|

and supposing that f ∈ C2(D), where D is ball K[x(0), R] from theorem 6.2.1.2 it follows

102 Numerical Methods in Computational Engineering

Corollary 6.2.1.1. If in D are fulfilled the following conditions:

(6.2.1.15) sij =
n

∑

k=1

∣

∣

∣

∣

∂2fi

∂xj∂xk

∣

∣

∣

∣

(i, j = 1, . . . , n);

(6.2.1.16) ||~f(~x
(0)

)|| ≤ Q, ||W−1(~x
(0)

)|| ≤ b;

(6.2.1.17) ∆0 = detW(~x
(0)

) 6= 0, h = nNQb2 ≤ 1
2
.

Then, if R ≥ r =
1−

√
1− 2h
h

Qb, method Newton-Kantorowich (6.2.1.13) converges to solution a ∈

K[~x
(0)

, r].

Because for 0 < h ≤ 1/2 it holds (1 −
√

1− 2h)/h ≤ 2, so that for r in Corollary 6.2.1.1
we can take r = 2Qb.

Modified Newton-Kantorowich method (6.2.1.14) converges also under conditions
given in Corollary 6.2.1.1.

In [1, pp. 384-386] the Newton-Kantorowich method is illustrated with system of
nonlinear equation in two unknowns. It is suggested to reader to write a program code
in Mathematica and Fortran.

Example 6.2.1.1. Solve the system of nonlinear equation

f1(x1, x2) = 9x2
1x2 + 4x2

2 − 36 = 0

f2(x1, x2) = 16x2
2 − x4

1 + x2 + 1 = 0,

which has a solution in first quadrant (x1, x2 > 0).

Using graphic presentation of implicit functions f1 and f2 in first quadrant, one can
see that solution ~a is located in the neighborhood of point (2, 1), so that we take for
initial vector ~x(0) = [2 1]T , i.e. x(0)

1 = 2 and x(0)
2 = 1.

By partial derivation of f1 and f2 one gets the Jacobian

W (x) =
[

18x1x2 9x2
1 + 8x2

−4x3
1 32x2 + 1

]

,

and its inverse
W−1(~x) =

1
∆(~x)

[

32x2 + 1 −(9x2
1 + 8x2)

4x3
1 18x1x2

]

,

where
∆(~x) = 18x1x2(32x2 + 1) + 4x3

1(9x2
1 + 8x2).

By putting f (k)
i ≡ fi(x

(k)
1 , x(k)

2) and ∆k ≡ ∆(x(k)) (i = 1, 2; k = 0, 1 . . .) in the scalar form of
Newton-Kantorowich formula (6.2.1.13), we get the iteration formula

x(k+1)
1 = x(k)

1 − 1
∆k

{(32x(k)
2 + 1)f (k)

1 − (9x(k)2

1 + 8x(k)
2)f (k)

2 },

x(k+1)
2 = x(k)

2 − 1
∆k

{4x(k)3

1 f (k)
1 + 18x(k)

1 x(k)
2 f (k)

2 }.

The appropriate Fortran code for solving given nonlinear equation is
Double precision x1,x2,x10,x11,x20,x21,f1,f2,Delta,EPS
F1(x1,x2)=9*x1**2*x2 + 4*x2**2-36
F2(x1,x2)=16*x2**2 - x1**4 + x2 + 1
Delta(x1,x2)=18*x1*x2*(32*x2+1)+4*x1**3*(9*x1**2+8*x2)

Lesson VI - Nonlinear Equations and Systems 103

Open(1, File=’Newt-Kant.out’)
x10=2.d0
x20=1.d0
EPS=1.d-6
Iter=0
write(1,5)

5 format(1h ,// 3x, ’i’,7x,’x1(i)’,9x,’x2(i)’,
* 9x,’f1(i)’, 9x,’f2(i)’/)
write(1,10)Iter, x10,x20,F1(x10,x20),F2(x10,x20)

1 x11=x10-((32*x20+1)*f1(x10,x20)-(9*x10**2+8*x20)*
* f2(x10,x20)) /Delta(x10,x20)
x21=x20-(4*x10**3*f1(x10,x20)+18*x10*x20*f2(x10,x20))

* /Delta(x10,x20)
Iter=Iter+1
write(1,10)Iter, x11,x21,F1(x11,x21),F2(x11,x21)

10 Format(1x,i3, 4D14.8,2x)
If(Dabs(x10-x11).lt.EPS.and.Dabs(x20-x21).lt.EPS)stop
If(Iter.gt.100)Stop
x10=x11
x20=x21
go to 1
End

and the output list of results is
i x1(i) x2(i) f1(i) f2(i)
0 .20000000D+01 .10000000D+01 .40000000D+01 .20000000D+01
1 .19830508D+01 .92295840D+00 .73136345D-01 .88110835D-01
2 .19837071D+01 .92074322D+00-.28694053D-04 .68348441D-04
3 .19837087D+01 .92074264D+00-.10324186D-10-.56994853D-10
4 .19837087D+01 .92074264D+00 .00000000D+00-.15543122D-14

6.2.2. Gradient method

Because Newton-Kantorowich method demands obtaining inverse operator F ′−1
(u),

what can be very complicated, and even impossible, it have been developed a whole
class of quasi-Newton methods, which use some approximations of noted operator (see
[21], [22], [23], [24]). One of this methods is gradient method.

For given system of nonlinear equations (6.2.1.12), with matrix form (see (6.2.0.3))

(6.2.2.1) ~f(~x) = ~0.

The gradient method for solving a given system of equations is based on minimization
of functional

U(~x) =
n

∑

i=1

fi(x1, . . . , xn)2 = (~f(~x), ~f(~x)).

It is easy to show that the equivalence U(~x) = 0 ⇐⇒ ~f(~x) = ~0 holds.
Suppose that equation (6.2.2.1) has unique solution ~x = ~a, for which functional U riches

minimum value. Let ~x(0) be initial approximation of this solution. Let us construct series
{~x(k)} such that U(~x(0)) > U(~x(1)) > U(~x(2)) > · · ·. In a same way as at linear equations (see
Chap. IV), we take

(6.2.2.2) ~x (k+1) = ~x (k) − λk∇U(~x (k)) (k = 0, 1, . . .),

where ∇U(~x) = grad(~x) =
[

∂U
∂x1

· · · ∂U
∂xn

]T

. Parameter λk is to be determined from condition

that scalar function S, defined with S(t) = U(~x (k) − t∇U(~x (k))) has a minimum value in
point t = λk. Having in mind that equation S′(t) = 0 is non-linear, proceed its linearization
around t = 0. In this case we have

L(k)
i = fi(~x (k) − t∇U(~x (k))) = fi(~x (k))− t(∇fi(~x (k)),∇U(~x (k)))

104 Numerical Methods in Computational Engineering

so that linearized equation is

n
∑

i=1

L(k)
i

d
dt

L(k)
i = −

n
∑

i=1

L(k)
i (∇fi~x (k)),∇U(~x (k))) = 0,

wherefrom we obtain

(6.2.2.3) λk = t =

n
∑

i=1
Hifi(~x (k))

n
∑

i=1
H2

i

,

where we put Hi = (∇fi(~x (k)), ∇U(~x (k))) (i = 1, . . . , n). Because of

∂U
∂xj

=
∂

∂xj

{ n
∑

i=1

fi(~x)2
}

= 2
n

∑

i=1

fi(~x)
∂fi(~x)

∂xj
,

we have

(6.2.2.4) ∇U(~x) = 2WT (~x)~f(~x),

where W(~x) is Jacobian matrix.
According to previous, (6.2.2.3) reduces to

λk =
1
2
· (~f (k),WkWT

k
~f (k))

(WkWT
k

~f (k),WkWT
k

~f (k))
,

where ~f (k) = ~f(~x (k)) and Wk = W(~x (k)). Finally, gradient method can be represented in
the form

~x (k+1) = ~x (k) − 2λkWT
k

~f(~x (k)) (k = 0, 1, . . .).

As we see, in spite of matrix W−1(~x (k)) which appears in Newton-Kantorowich
method, we have now matrix 2λkWT

k .

Example 6.2.1.2. System of nonlinear equations given in example 6.2.1.1 will be solved using gradient
method, starting with the same initial vector ~x(0) = [2 1]T , giving the following list of results

i x1(i) x2(i) 2lam_k
0 .2000000000D+01 .1000000000D+01 .305787395D-03
1 .1975537008D+01 .9259994504D+00 .538747689D-03
2 .1983210179D+01 .9201871306D+00 .339553623D-03
3 .1983643559D+01 .9207840032D+00 .535596539D-03
4 .1983705230D+01 .9207387845D+00 .339328604D-03
5 .1983708270D+01 .9207429317D+00 .535573354D-03
6 .1983708709D+01 .9207426096D+00 .393325162D-03
7 .1983708731D+01 .9207426391D+00 .535990624D-03
8 .1983708234D+01 .9207429368D+00 .337793301D-03
9 .1983708734D+01 .9207426370D+00

Note that the convergence here is much slower than at Newton-Kantorowich method,
due to fact that gradient method is of first order.

Gradient method is successfully used in many optimization problems of nonlinear
programming, with large number of methods, especially of gradient type, which are basis
for number of programming packages for solving nonlinear programming problems.

6.2.3. Globally convergent methods

We have seen that Newtons method and Newton-like methods (quasi-Newton meth-
ods) for solving nonlinear equations has an unfortunate tendency not to converge if the
initial guess is not sufficiently close to the root. A global method is one that converges

Lesson VI - Nonlinear Equations and Systems 105

to a solution from almost any starting point. Therefore, it is our goal to develop an
algorithm that combines the rapid local convergence of Newtons method with a glob-
ally convergent strategy that will guarantee some progress towards the solution at each
iteration. The algorithm is closely related to the quasi-Newton method of minimization
(see [5], p. 376).

From (6.2.1.13), Newton-Raphson method, we have so known Newton step in iteration
formula

(6.2.3.1) ~x (k+1) − ~x (k) = δ~x = −W−1(~x (k))~f(~x (k)), (k = 0, 1, . . .)

where W is Jacobian matrix. The question is how one should decide to accept the
Newton step δx? If we denote F = ~f(~x (k)), a reasonable strategy for step acceptance is
that |F|2 = F · F decreases, what is the same requirement one would impose if trying to
minimize

(6.2.3.2) f =
1
2
F · F.

Every solution of (6.2.1.12) minimizes (6.2.3.2), but there may be some local minima of
(6.2.3.2) that are not solution of (6.2.1.12). Thus, simply applying some minimum finding
algorithms can be wrong.

To develop a better strategy, note that Newton step (6.2.3.1) is a descent direction
for f :

(6.2.3.3) ∇f · δ~x = (F ·W) · (−W−1 · F) = −F · F < 0.

Thus, the strategy is quite simple. One should first try the full Newton step, because
once we are close enough to the solution, we will get quadratic convergence. However,
we should check at each iteration that the proposed step reduces f . If not, we go
back (backtrack) along the Newton direction until we get acceptable step. Because the
Newton direction is descent direction for f , we fill find for sure an acceptable step by
backtracking.

It is to mention that this strategy essentially minimizes f by by taking Newton steps
determined in such a way that bring ∇f to zero. In spite of fact that this method can
occasionally lead to local minimum of f , this is rather rare in practice. In such a case,
one should try a new starting point.

Line Searches and Backtracking

When we are not close enough to the minimum of f , taking the full Newton step ~p =
δ~x need not decrease the function; we may move too far for the quadratic approximation
to be valid. All we are guaranteed is that initially f decreases as we move in the Newton
direction. So the goal is to move to a new point xnew along the direction of the Newton
step ~p, but not necessarily all the way (see [5], pp. 377-378):

(6.2.3.4) ~xnew = ~xold + λ~p (0 < λ ≤ 1)

The aim is to find λ so that f(~xold + λ~p) has decreased sufficiently. Until the early 1970s,
standard practice was to choose λ so that ~xnew exactly minimizes f in the direction ~p.
However, we now know that it is extremely wasteful of function evaluations to do so. A
better strategy is as follows: Since ~p is always the Newton direction in our algorithms,
we first try λ = 1, the full Newton step. This will lead to quadratic convergence when
~x is sufficiently close to the solution. However, if f(~xnew) does not meet our acceptance
criteria, we backtrack along the Newton direction, trying a smaller value of λ, until

106 Numerical Methods in Computational Engineering

we find a suitable point. Since the Newton direction is a descent direction, we are
guaranteed to decrease f for sufficiently small λ. What should the criterion for accepting
a step be? It is not sufficient to require merely that f(~xnew) < f(~xold). This criterion can
fail to converge to a minimum of f in one of two ways. First, it is possible to construct
a sequence of steps satisfying this criterion with f decreasing too slowly relative to the
step lengths. Second, one can have a sequence where the step lengths are too small
relative to the initial rate of decrease of f . A simple way to fix the first problem is to
require the average rate of decrease of f to be at least some fraction α of the initial rate
of decrease ∇f · ~p

(6.2.3.5) f(~xnew) ≤ f(~xold) + α∇f · (~xnew − ~xold).

Here the parameter α satisfies 0 < α < 1. We can get away with quite small values of
α; α = 10−4 is a good choice. The second problem can be fixed by requiring the rate of
decrease of f at ~xnew to be greater than some fraction β of the rate of decrease of f at ~xold.
In practice, we will not need to impose this second constraint because our backtracking
algorithm will have a built-in cutoff to avoid taking steps that are too small.

Here is the strategy for a practical backtracking routine. Define

(6.2.3.6) g(λ) ≡ f(~xold + λ~p)

so that

(6.2.3.7) g′(λ) = ∇f · ~p

If we need to backtrack, then we model g with the most current information we have
and choose λ to minimize the model. We start with g(0) and g′(0) available. The first
step is always the Newton step, λ = 1. If this step is not acceptable, we have available
g(1) as well. We can therefore model g(λ) as a quadratic:

(6.2.3.8) g(λ) ≈ [g(1)− g(0)− g′(0)]λ2 + g(0).

By first derivative of this function we find the minimum condition

(6.2.3.9) λ = − g′(0)
2[g(1)− g(0)− g′(0)]

.

Since the Newton step failed, we can show that λ<
∼

1
2 for small α. We need to guard

against too small a value of λ, however. We set λmin = 0.1.
On second and subsequent backtracks, we model g as a cubic in λ, using the previous

value g(λ1) and the second most recent value g(λ2).

(6.2.3.10) g(λ) = aλ3 + bλ2 + g′(0)λ + g(0)

Requiring this expression to give the correct values of g at λ1 and λ2 gives two
equations that can be solved for the coefficients a and b.

(6.2.3.11)
[

a
b

]

=
1

λ1 − λ2

[

1/λ2
1 −1/λ2

2
−λ2/λ2

1 λ1/λ2
2

]

·
[

g(λ1)− g′(0)λ1 − g(0)
g(λ2)− g′(0)λ2 − g(0)

]

.

The minimum of the cubic (6.2.3.10) is at

(6.2.3.12) λ =
−b +

√

b2 − 3ag′(0)
3a

.

Lesson VI - Nonlinear Equations and Systems 107

One should enforce that λ lie between λmax = 0.5λ1 and λmin = 0.1λ1. The corresponding
code in FORTRAN is given in [5], pp. 378-381. It it suggested to reader to write the
corresponding code in Mathematica.

Multidimensional Secant Methods: Broyden’s Method

Newton’s method as used previously is rather efficient, but it still have several dis-
advantages. One of the most important is that it needs Jacobian matrix. In many
problems the Jacobian matrix is not available, i.e. there do not exist analytic deriva-
tives. If the function evaluation is complicated, the finite-difference determination of
Jacobian can be prohibitive. There are quasi-Newton methods which provide cheap
approximation to the Jacobian for the purpose of zero finding. The methods are often
called secant methods, because they reduce in one dimension to the secant method. One
of the best of those methods is Broyden’s method (see [21]).

If one denotes approximate Jacobian by B, then the i-th quasi-Newton step δ~xi is
the solution of

(6.2.3.13) Bi · δ~xi = −Fi,

where δ~xi = ~xi+1 − ~xi. Quasi-Newton or secant condition is that Bi+1 satisfy

(6.2.3.14) Bi+1 · δ~xi = δFi,

where δFi = Fi+1−Fi. This is generalization of the one-dimensional secant approximation
to the derivative, δF/δx. However, equation (6.2.3.14) does not determine Bi+1 uniquely
in more than one dimension. Many different auxiliary conditions to determine Bi+1 have
been examined, but the best one results from the Broyden’s formula. This formula is
based on idea of getting Bi+1 by making a least change to Bi in accordance to the secant
equation (6.2.3.14). Broyden gave the formula

(6.2.3.15) Bi+1 = Bi +
(δFi −Bi · δ~xi)⊗ δ~xi

δ~xi · δ~xi
.

One can check that Bi+1 satisfies (6.2.3.14).
Early implementations of Broyden’s method used the Sherman-Morrison formula to

invert equation analytically,

(6.2.3.16) B−1
i+1 = B(−1)

i +
(δ~xi −B−1

i · δFi)⊗ δ~xi ·B−1
i

δ~xi · δB−1
i · δFi

.

Thus, instead of solving equation (6.2.3.1) by, for example, LU decomposition, one de-
termined

(6.2.3.17) δ~xi = −B−1
i · Fi

by matrix multiplication in O(n2) operations. The disadvantage of this method is that
it cannot be easily embedded in a globally convergent strategy, for which the gradient
of equation (6.2.3.2) requires B, not B−1

(6.2.3.18) ∇(
1
2
F · F) ' BT · F

Accordingly, one should implement the update formula in the form (6.2.3.15). However,
we can still preserve the O(n2) solution of (6.2.3.1) by using QR decomposition of Bi+1

in O(n2) operations. All needed is initial approximation B0 to start process. It is often
accepted to take identity matrix, and then allow O(n) updates to produce a reasonable

108 Numerical Methods in Computational Engineering

approximation to the Jacobian. In [5], p. 382-383, the first n function evaluations are
spent on a finite-difference approximation in order to initialize B. Since B is not exact
Jacobian, it is not guaranteed that δ~x is descent direction for f = 1

2F ·F (see eq. (6.2.3.3)).
That has a consequence that the line search algorithm can fail to return the suitable
step if B is far from the true Jacobian. In this case we simply reinitialize B.

Like the secant method in one dimension, Broyden’s method converges superlinearly
once you get close enough to the root. Embedded in a global strategy, it is almost as
robust as Newton’s method, and often needs far fewer function evaluations to determine
a zero. Note that the final value of B is not always close to the true Jacobian at the
root, in spite of fact that method converges.

The programme code ([5], pp. 383-385) of Broyden’s method differs from Newtonian
methods in using QR decomposition instead of LU, and determination of Jacobian by
finite-difference approximation instead of direct evaluation.

More Advanced Implementations

One of the principal ways that the methods described above can fail is if matrix W
(Newton-Kantorowich) or B (Broyden’s method) becomes singular or nearly singular,
so that ∆x cannot be determined. This situation will not occur very often in practice.
Methods developed so far to deal with this problem involve the monitoring of condition
number of W and perturbing W if singularity or near singularity is detected. This
feature is most easily implemented if QR decomposition instead of LU decomposition
in Newton (or quasi-Newton) method is applied. However, in spite of fact that this
method can solve problems when W is exactly singular and Newton’s and Newton-like
methods fail, it is occasionally less robust on other problems where LU decomposition
succeeds. Implementation details, like roundoff, underflow, etc. are to be considered
and taken in account.

In [5], considering effectiveness of strategies for minimization and zero finding, the
global strategies have been based on line searches. Other global algorithms, like hook
step and dogleg step methods, are based on the model-trust region approach, which is
related to the Levenberg-Marquardt algorithm for nonlinear least-squares. In spite being
more complicated than line searches, these methods have a reputation for robustness
even when starting far from desired zero or minimum.

Numerous libraries and software packages are available for solving nonlinear equa-
tions. Many workstations and mainframe computers have such libraries attached to
operating systems. Many commercial software packages contain nonlinear equation
solvers. Very popolar among engineers are Matlab and Matcad. More sophisticated
packages like Mathematica, IMSL, Macsyma, and Maple contain programs for nonlin-
ear equation solving. The book Numerical recipes [5] contains numerous programs for
solving nonlinear equation.

Bibliography (Cited references and further reading)

[1] Milovanović, G.V., Numerical Analysis I, Naučna knjiga, Beograd, 1988 (Serbian).
[2] Hoffman, J.D., Numerical Methods for Engineers and Scientists. Taylor & Francis,

Boca Raton-London-New York-Singapore, 2001.
[3] Milovanović, G.V. and Djordjević, Dj.R., Programiranje numeričkih metoda na

FORTRAN jeziku. Institut za dokumentaciju zaštite na radu ”Edvard Kardelj”,
Nǐs, 1981 (Serbian).

[4] Stoer, J., and Bulirsch, R., Introduction to Numerical Analysis, Springer, New York,
1980.

[5] Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical Re-
cepies - The Art of Scientific Computing. Cambridge University Press, 1989.

Lesson VI - Nonlinear Equations and Systems 109

[6] Djordjević, L.N., An iterative solution of algebraic equations with a parameter to
accelerate convergence. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat.Fiz. No.
412- No. 460(1973), 179-182.

[7] Tihonov, O.N., O bystrom vychyslnǐi najbolshih korneǐ mnogočlena. Zap. Leningrad.
gorn. in-ta 48, 3(1968), 36-41.

[8] Ostrowski, A., Solution of Equations and System of Equations. Academic Press,
New Yurk, 1966.

[9] Wegstein, J.H., Accelerating convergence of iterative processes. Comm. ACM 1
(1958), 9-13.

[10] Ralston,A., A First Course in Numerical Analysis.
McGraw-Hill, New York, 1965.

[11] Milovanović, G.V. & Petković, M.S., On some modifications of a third order method
for solving equations. Univ. Beograd. Publ. Elektroteh. Fak. Ser. Mat. Fiz. No. 678
- No. 715 (1980), pp. 63-67.

[12] Milovanović, Kovačević, M.A., Two iterative processes of third order without deriva-
tives. IV Znanstveni skup PPPR, Stubičke Toplice, 1982, Proceedings, pp. 63-67
(Serbian).

[13] Varjuhin, V.A. and Kasjanjuk, S.A., Ob iteracionnyh metodah utočnenija korneǐ
uravnenǐi. Ž. Vychysl. Mat. i Mat. Fiz. 9(1969), 684-687.

[14] Lika, D.K., Ob iteracionnyh metodah visšego porjadka. Dokl. 2-̌i Nauč.-tehn. respubl.
konf. Moldavǐi. Kishinev, 1965, pp.13-16.

[15] Djordjević, L.N. & Milovanović, G.V., A combined iterative formula for solving equa-
tions. Informatika 78, Bled 1978, 3(207).

[16] Petković, M.S., Some iterative interval methods for solving equations. Ph.D. thesis,
University Nǐs, 1980.

[17] Petković, M.S. & Petković, D. Lj., On a method for two-sided approaching for solving
equations. Freiburger Intervall-Berichte 10(1980), pp. 1-10.

[18] Hoffman, J.D., Numerical Methods for Engineers and Scientists. Taylor & Francis,
Boca Raton-London-New York-Singapore, 2001.

[19] IMSL Math/Library Users Manual , IMSL Inc., 2500 City West Boulevard, Houston
TX 77042

[20] NAG Fortran Library, Numerical Algorithms Group, 256 Banbury Road, Oxford
OX27DE, U.K., Chapter F02.

[21] Broyden, C.G., Quasi-Newton methods and their application to function minimiza-
tion, Math. Comp. 29(1967), 368-381.

[22] Kantorowich, L.V., Funkcional’nyi analiz i prikladnaja matematika., Uspehi Mat.
Nauk 3(1948), 89-185.

[23] Ortega, J.M. & Rheinboldt, W.C., Iterative solution of nonlinear equations in several
variables, Academic Press, New York, 1970.

[24] Rall, L., Computational solution of nonlinear operator equations, New York, 1969.
[25] Kul’čickǐi, O.Ju. & Šimelevič, L.I., O nahoždenǐi načal’nogo pribǐzenija., Ž. Vyčisl.

Mat. i Mat. Fiz. 14(1974), pp. 1016-1018.
[26] Dennis, J.E. and Schnabel, R.B., Numerical Methods for Unconstrained Optimiza-

tion and Nonlinear Equations, Englewood Cliffs, NJ: Prentice Hall, 1983.

