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LESSON IV

4. Linear Systems of Algebraic Equations:
Orthogonalization, Gradient Methods,

Relaxation Methods

4.1. Orthogonalization method

Consider the system of linear algebraic equations with regular matrix.

(4.1.1)

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...
an1x1 + an2x2 + · · ·+ annxn = bn,

or, in matrix form

(4.1.2) A~x = ~b.

If we define (n + 1)-dimensional vectors of form
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, (i = 1, . . . , n),

then this system can be written in the form

(4.1.3) (~ai, ~y) = ~y T~ai = 0 (i = 1, . . . , n).

The equations (4.1.3) point out to the possibility of solving system (4.1.1) by using
orthogonality of vector ~y to vectors ~ai (i = 1, . . . , n). The mentioned orthogonality is
equivalent to orthogonality of vector ~y to linear subspace Hn, which is generated by
vectors ~ai (i = 1, . . . , n), i.e. Hn = L(~a1, . . . ,~an). Staring from basis {~a1, . . . ,~an}, by means of
Gram-Schmidt procedure, we construct orthonormed basis Bn = {~v1, . . . , ~vn} of semi-space
Hn. Vector ~y is obviously orthogonal to all vectors of orthonormed basis Bn.

Vector ~an+1 = [0 0 . . . 0 1]T , being linearly independent to vectors of basis Bn, shell
be orthogonalized too. Thus,

~u = ~an+1 −
n

∑

i=1

(~an+1, ~vi)~vi.
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Let the coordinates of vector ~u be, in turn, u1, . . . , un, un+1, i.e. ~u = [u1 u2 . . . un un+1]T .
Because vector ~u satisfies orthogonality conditions (~u,~vi) = 0 (i = 1, . . . , n), we conclude
that also (~u,~ai) = 0 (i = 1, . . . , n), i.e.

(~u,~a1) = a11u1 + a12u2 + · · ·+ a1nun − b1un+1 = 0

(~u,~a2) = a21u1 + a22u2 + · · ·+ a2nun − b2un+1 = 0
...

(~u,~an) = an1u1 + an2u2 + · · ·+ annun − bnun+1 = 0.

Note that un+1 6= 0. Namely, if would be un+1 = 0, then n−tuple (u1, u2, . . . , un) would
be solution of homogeneous system of equations with matrix A = [aij ]. Nevertheless,
because homogeneous system (detA 6= 0) has only trivial solutions, we would have ui =
0 (i = 1, . . . , n), and vector ~an+1 would be linear combination of vectors of basis Bn, what
is in contradiction to choice of this vector.

If we divide all equations of last system with un+1, it is easy to conclude that vector
~y, with xi =

ui

un+1
(i = 1, . . . , n), is solution of system of equation (4.1.3). Then n−tuple

(x1, . . . , xn) is solution of system (4.1.1).
Finally, note that

(1) Given method of orthogonalization demands greater number of multiplications and
dividing than Gauss method of elimination;

(2) Orthogonalization can be done by solving of system of linear algebraic equation.

4.2. Relaxation methods

Let ~xp be approximative solution of system of equations

(4.2.1) A~x = ~b.

Because exact solution ~x = A−1~b is unknown, it is a question in which extent ~xp satisfies
given system of equations. As a measure of this, it is usual used norm of vector of
residuum

(4.2.2) ~r = A~xp −~b.

If ~r is zero-vector, it is easy to see that ~xp is exact solution of system (4.2.1). Based on
previous, one can conclude that system (4.2.1) is almost satisfied if the components of
vector r are close to zero. Nevertheless, last statement is not always valid. Namely, at
weak conditioned systems, norm of vector ~xp− ~A−1~b can be large, in the case when norm
of residuum vector small, regarding to ~xp −A−1~b = A−1~r.

In spite of this deficiency, vector ~r is of great importance in broad class of iterative
methods, so known relaxation methods.

Relaxation method is every one at which next approximation of solution is obtained
on the base of previous approximation and residuum vector (In general case it depends on
several previous approximations), which is used as indicator for magnitude of correction.

First ideas on relaxation methods were given by Gauss. Nevertheless, systematic
research in this field is done in second half of last century. Being very convenient for
systems with large numbers of equations, they are applied increasingly for solving partial
differential equations in their applications to technology problems, especially in Finite
Elements Method (FEM). There exists reach bibliography on relaxation methods (see,
for example, [5], [6], [7], [8], [9], [10]).

Successive-Over-Relaxation (SOR) is a method which generalizes one variant of
Gauss-Seidel method for solving system A~x = ~b.
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Let the matrix D = diag(A) be regular. Decompose matrix A to form

A = C1 + D + C2,

where

C1 =
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



0 0 . . . 0 0
a21 0 0 0
...

an1 an2 an,n−1 0
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0 0 0
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.

If we take for computation of residuum vector ~r for xi the last obtained value (like at
Gauss-Seidel method), i.e.

~r = C1~x (k) + (D + C2)~x k−1 −~b

and if we put ~δ (k) = −ω~x, we can form iterative process of form

B~δ (k) = −ω~x (k = 1, 2, . . .),

i.e.

(4.2.3) D~x (k) = D~x (k−1) + ω[~b−C1~x (k) − (D + C2)~x (k−1)],

where k = 1, 2, . . . and ω real parameter. Parameter ω is called relaxation factor and can
be, in general case, changed during computation.

Iterative process (4.2.3) can be presented in scalar form, as follows.

aiix
∗ (k)
i = −

∑

j<i

aijx
(k)
j −

∑

j>i

aijx
(k−1)
j + bi,

x(k)
i = x(k−1)

i + ω(x∗ (k)
i − x(k−1)

i )

where i = 1, . . . , n and k = 1, 2 . . . .
Note that for ω = 1 (4.2.3) reduces to Gauss-Seidel process.
On the basis of (4.2.3) we have

(4.2.4) (D + ωC1)~x (k) = [(1− ω)D− ωξ]~x (k−1) + ω~b (k = 1, 2, . . .),

i.e.
~x (k) = K(ω)~x (k−1) + ~f(ω) (k = 1, 2, . . .),

where
K(ω) = (D + ωC1)−1[(1− ω)D− ωξ] and ~f(ω) = ω(D + ωC1)−1~b.

Chebyshev semi-iterative method is a method connected to SOR method in a way
described in this sub-section.

Given a system of equations

(4.2.5) ~x = B~x + ~β

with Hermitian matrix B of order n. If ρ(B) < 1, the iterative process

(4.2.6) ~x k = B~x k−1 + ~β (k = 1, 2, . . .)
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converges to solution ~x of system (4.2.5). In order to accelerate the convergence of
process (4.2.6), consider linear combination of vector ~x k (this procedure is often called
linear acceleration), i.e.

(4.2.7) ~y k =
k

∑

i=0

cki~x i (k = 0, 1, . . .)

under condition
∑k

i=0 cki = 1.
If we put ~ε (k) = ~x k − ~x and ~ξ(k) = ~y k − ~x (k = 0, 1, . . .), we have

~ξ(k) =
k

∑

i=0

cki~ε i = (
k

∑

i=0

ckiB i)~ε (0),

i.e.

(4.2.8) ~ξ k = Qk(B)~ε (0),

where

(4.2.9) Qk(t) =
k

∑

i=0

cki~t i and Qk(1) = 1.

Assume that {~ei} is orthonormed system of eigenvectors of Hermitian matrix B,
where B~ei = λi~ei (λi ≡ λi(B)) (i = 1, . . . , n). If we develop vector ~ε (0) by eigenvectors ~ei,
i.e. ~ε (0) = p1~e1 + . . . + pn~en, the equality (4.2.8) becomes

~ξ(k) =
n

∑

i=1

piQk(λi)~ei.

Denote with Pk set of all polynomials Qk of form (4.2.9), i.e. set of all polynomials
of degree k with normalization Qk(1) = 1. It can be shown that general three-term
recurrence formula for generating of polynomials Qk ∈ Pk is of form

(4.2.10) Qk+1(t) = (αkt + 1− αk − βk)Qk(t) + βkQk−1(t) (k = 0, 1, . . .)

where Q0(t) = 1, β0 = 0, αk and βk are real numbers.
Because of

||~ξ (k)||E =
(

n
∑

i=1

p2
i Qk(λi)2

)1/2 ≤ max
i
|Qk(λi)|

(

n
∑

i=1

p2
i )

1/2,

i.e.
||~ξ (k)||E ≤ ||~ε (0)||E max

i
|Qk(λi)|,

for choice of polynomials (Q̃k) we adopt a criteria

min
Qk∈Pk

(

max
−ρ≤t≤ρ

|Qk(t)|
)

= max
−ρ≤t≤ρ

|Q̃k(t)|,

where ρ ≡ ρ(B). Then we get

(4.2.11) Q̃k(t) =
Tk(t/ρ)
Tk(1/ρ)

(k = 0, 1, . . .),

where Tk is Chebyshev polynomial of degree k. It is easy to show that in this case
recurrence relation (4.2.10) reduces to

(4.2.12) Q̃k+1(t) = (αktQ̃k(t) + (1− αk)Q̃k−1(t) (k = 0, 1, . . .)
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where

(4.2.13). α0 = 1, β0 = 0, αk =
2
ρ
· Tk(1/ρ)
Tk+1(1/ρ)

, βk = 1− αk (k = 1, 2, . . .)

Thus, on basis (4.2.12) is generated set of polynomials {Q̃k}, and then, based on
(4.2.7) series {~y (k)}. This procedure, or algorithm, is known as Chebyshev semi-iterative
method.

The given method can be represented in explicit form (see [1], pp. 281, and [7]) as

(4.2.14). ~y (k+1) = ~y (k−1) + αk
(

B~y (k) + ~β − ~y (k−1)) (k = 1, 2, . . .),

where series {αk} is defined using (4.2.13) and

~y (0) = ~x (0) and ~y (1) = B~x (0) + ~β.

On the basis of previous, members of series {αk} are

α0 = 1, α1 =
2

2− ρ2 , αk =
1

1− 1
4ρ2αk−1

(k = 2, 3, . . .),

whereby
2 > α1 > α2 > . . . ≤ lim

k→∞
αk = ωopt =

2

1 +
√

1− ρ2
> 1.

Thus, αk tends to optimal relaxation factor obtained by using SOR method.

4.3. Gradient methods

In the class of methods used at minimization of functionals the special role have
gradient methods. In this section we will consider two gradient methods for solving
system of linear equations

(4.3.1) A~x = ~b,

where A is normal matrix. First method is Steepest Descent Method, and second is
Method of Conjugate Gradients. Note that method of conjugate gradients by virtue is
nit iterative method. Both methods are based on minimization of functional F : Rn → R
defined by

(4.3.2) F (~x) = (A~x, ~x)− 2(~b, ~x).

Because A is normal matrix, we have

F (~x)− F (A−1~b) = (A(~x−A−1~b), ~x−A−1~b) ≥ 0,

we conclude that functional F reaches minimum for ~x = A−1~b, what is solution of system
(4.3.1).

Steepest Descent (SD) Method. Every method of form

(4.3.3) ~x (k) = ~x (k−1) − αk−1 grad F~x (k−1) (k = 1, 2, . . .)

is called Steepest Descent (SD) method.
If parameter αp is determined from condition that

(4.3.4) F (~x (p) − αp grad F (~x (p))) (∀p ∈ N0)
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is minimal, method (4.3.3) is called Steepest Descent method.
From (4.3.2) it follows grad F (x) = 2(A~x−~b). Then

(4.3.5) ~x (k) = ~x (k−1) − 2αk−1 (A~x (k−1) −~b) (k = 1, 2, . . .).

If we in equation

F (~x + t~r) = F (~x) + 2t(A~x (k−1) −~b) (k = 1, 2, . . .).

proceed substitution
(

~x ~r t
~x (p) A~x (p) −~b −2αp

)

(p ∈ N0),

we obtain (4.3.4) in form

F (~x (p+1)) = F (~x (p))− 4αp(~r (p), ~r (p)) + 4α2
p(A~r (p), ~r (p)),

where ~r (p) = A~x (p) −~b.
Square trinomial αp → Φ(αp) = F (~x (p+1)) has minimal value if

(4.3.6) 2αp =
(~r (p), ~r (p))

(A~r (p), ~r (p))
.

On the basis of (4.3.5) and (4.3.6), we obtain SD method

(4.3.7) ~x (k) = ~x (k−1) − ||A~x (k−1) −~b||2E
(A(A~x (k−1) −~b)(A~x (k−1) −~b)

(A~x (k−1) −~b),

where k = 1, 2, . . . .

Theorem 4.3.1. Let ~x be exact solution of system (4.3.1), which matrix A is normal. For steepest
descent method the following inequalities hold.

(4.3.8) F (~x (k))− F (~x) ≤
(M −m
M + m

)2
(F (~x (k−1))− F (~x)),

(4.3.9) ||~x (k) − ~x|| ≤
(M −m
M + m

)k
√

M
m
||~x (0) − ~x||E ,

where ~x (0) is arbitrary initial vector, and 0 < m ≤ λi(A) ≤ M .
The proof of given theorem can be found in ([1], pp. 284-286).

Method of Conjugate Gradients (CG). Theoretically considering (with no taking in
account round-off error), CG method converges to exact solution in at most n iterations
(n is matrix order). This method consists in construction of series {~x (k)} by using

~x (k) = ~x (0) +
k−1
∑

i=0

αiAi~r (0) (k = 1, . . . , n),

starting with arbitrary initial vector ~x (0), whereby ~r (0) = A~x (0) −~b, whereas coefficients
αi are determined from condition that function (α0, . . . , αk−1) → F (~x (k)) reaches minimum.
For practical reason, in application of this method, it is efficient to construct series of
vectors {~p (k)}, being mutual conjugate in sense

(~p (i),A~p (j)) = 0 (i 6= j).
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Then the induced method can be represented recursively using the following formulas:

~x (k+1) = ~x (k) − ck~p (k) (k = 0, 1, . . . , n− 1),

~r (k) = A~x (k) −~b (k = 0, 1, . . . , n),

~p (0) = −~r (0), ~p (k) = −~r (k) + qk~p (k−1) (k = 1, . . . , n− 1),

ck =
(~p (k), ~r (k))

(~p (k),A~p (k))
, qk =

(~r (k),A~p (k−1))
(~p (k−1),A~p (k−1))

, (k = 0, 1, . . . , n− 1).

As previously mentioned, for some m ≤ n will be theoretically ~r (m) = 0, meaning that
the exact solution of system (4.3.1) is determined.

Writing code in algorithmic language (e.g. Fortran), object-oriented language (e.g.
C++), and sophisticated system (e.g. Mathematica) for all given methods is recommended
for reader.

4.4. Packages for systems of linear algebraic equations

For many computer-early years ago (late sixties and early seventies of previous
century) the most popular program (at least at Nǐs University), linear equations solver,
was SIMQ from SSP (Scientific Subroutine Package) by IBM corporation.

Nowadays, in many cases you will have no alternative but to use sophisticated
black-box program packages. Several good ones are available. LINPACK was developed at
Argonne National Laboratories and deserves particular mention because it is published,
documented, and available for free use. A successor to LINPACK, LAPACK, is becoming
available. Packages available commercially include those in the IMSL and NAG libraries.
One should keep in mind that the sophisticated packages are designed with very large
linear systems in mind. They therefore go to great effort to minimize not only the
number of operations, but also the required storage. Routines for the various tasks are
usually provided in several versions, corresponding to several possible simplifications in
the form of the input coefficient matrix: symmetric, triangular, banded, positive definite,
etc. If one has a large matrix in one of these forms, he should certainly take advantage
of the increased efficiency provided by these different routines, and not just use the
form provided for general matrices. There is also a great watershed dividing routines
that are direct (i.e., execute in a predictable number of operations) from routines that
are iterative (i.e., attempt to converge to the desired answer in however many steps
are necessary). Iterative methods become preferable when the battle against loss of
significance is in danger of being lost, either due to large n or because the problem is
close to singular. Very interesting techniques are those the borderline between direct
and iterative methods, namely the iterative improvement of a solution that has been
obtained by direct methods.

Many commercial software packages contain solvers for systems of linear algebraic
equations. Some of the more prominent packages are Matlab and Mathcad. The spread-
sheet Excel can also be used to solve systems of equations. More sophisticated packages,
such as Mathematica, Macsyma, and Maple also contain linear equations solvers.

The book Numerical Recipes [4] contains several subroutines for solving systems of
linear algebraic equations. Some algorithms, from which some are codded, are given in
book Numerical Methods for Engineers and Scientists [3] (see Chapter 1).

Some general guidelines for selecting a method for solving systems of linear algebraic
equations are given as follows.
• Direct elimination methods are preferred for small systems (n ≤ 50 to 100) and

systems with few zeros (nonsparse systems). Gauss elimination is the method of
choice.
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• For tridiagonal systems, the Thomas algorithm is the method of choice ([3], Chapter
1).

• LU factorization methods are the methods of choice when more than one vectors ~b
must be considered.

• For large systems that are not diagonally dominant, the round-off errors can be
large.

• Iterative methods are preferred for large, sparse matrices that are diagonally domi-
nant. The SOR (Successive-Over-Relaxation) method is recommended. Numerical
experimentation to find the optimum over-relaxation factor ω is usually worthwhile
if the system of equations is to be solved for many vectors ~b.
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