Faculty of Civil Engineering Belgrade Master Study COMPUTATIONAL ENGINEERING Fall semester 2005/2006

ASSIGNMENTS

LESSONS I-III

[1] Carry out Gauss elimination to solve the system:

$$
\left[\begin{array}{cccc}
2 & 3 & -1 & 1 \\
1 & 2 & 3 & -1 \\
4 & 5 & -9 & 6 \\
1 & 1 & -4 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
5 \\
-6 \\
28 \\
7
\end{array}\right] .
$$

[2] Solve the following system in three different ways (arbitrary):

$$
\left[\begin{array}{llll}
0.31 & 0.14 & 0.30 & 0.27 \\
0.26 & 0.32 & 0.18 & 0.24 \\
0.61 & 0.22 & 0.20 & 0.31 \\
0.40 & 0.34 & 0.36 & 0.17
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
1.02 \\
1.00 \\
1.34 \\
1.27
\end{array}\right] .
$$

Write a program subroutines in an arbitrary programming language.
[3] Solve the following system by Gauss elimination

$$
\left[\begin{array}{ccc}
2.304 & -1.213 & 2.441 \\
8.752 & -5.608 & 3.916 \\
1.527 & 4.333 & -2.214
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
7.201 \\
9.284 \\
3.551
\end{array}\right] .
$$

[4] Solve the following system

$$
\left[\begin{array}{lll}
0.000003 & 0.213472 & 0.332147 \\
0.215512 & 0.375623 & 0.476625 \\
0.173257 & 0.663257 & 0.625675
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0.235262 \\
0.127653 \\
0.285321
\end{array}\right] .
$$

a) using Gauss elimination,
b) using Gauss elimination with pivoting.

Compare results (use six digits).
[5] For given (integer) matrix

$$
\mathbf{A}=\left[\begin{array}{lll}
3 & 1 & 6 \\
2 & 1 & 3 \\
1 & 1 & 1
\end{array}\right]
$$

find the inverse, using
a) Gauss elimination,
b) Gauss-Jordan method.

Hint: Proceed transformation

$$
\left[\begin{array}{lll|lll}
3 & 1 & 6 & 1 & 0 & 0 \\
2 & 1 & 3 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
\mathbf{I} & \mathbf{A}^{-\mathbf{1}} \\
\end{array}\right]
$$

[6] Explore the convergence of iterative solution of system of linear equations

$$
\left[\begin{array}{ccc}
10 & 3 & -1 \\
-1 & 5 & -1 \\
1 & 2 & 10
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
12 \\
3 \\
13
\end{array}\right]
$$

and proceed solution using
a) Jacobi method,
b) Gauss-Seidel Method.
(Solution: $\overrightarrow{\mathbf{x}}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{T}$.
[7] Solve the system

$$
\left[\begin{array}{ccc}
3 & 4 & -1 \\
2 & 6 & 3 \\
-1 & 1 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
7 \\
-2 \\
4
\end{array}\right]
$$

using
a) Jacobi method,
b) Gauss-Seidel Method.
[8] There are three widely held errors about iteration. The following three statements correct these errors:
A. Diagonal dominance is not required for either Jacobi or Gauss-Seidel method.
Example: find the $\mathbf{A}^{-\mathbf{1}}$ using iterative method for given

$$
\mathbf{A}=\left[\begin{array}{ccc}
8 & 2 & 1 \\
10 & 4 & 1 \\
50 & 25 & 2
\end{array}\right]
$$

with $\varepsilon=0.1$. Find the inverse, using also
a) Gauss elimination,
b) Gauss-Jordan method.

Compare with exact solution yield with Mathematica.
B. It is not always true that if the Jacobi method works, then Gauss-Seidel works even better.
The belief that Gauss-Seidel is always better than Jacobi comes from the fact that if \mathbf{A} is symmetric and positive definite and satisfied certain other conditions, then Gauss-Seidel converges as fast as Jacobi.
C. Iteration methods are not better for ill-conditioned problems than Gauss elimination.
It is often believed that the source of trouble in Gauss elimination for ill-conditioned problems is the steady accumulation of round-off errors during the computation. This is not so - the inaccuracy often arises almost entirely in one single arithmetic step of elimination.
[9] Write a program to use Gauss-Seidel iteration to solve the
system

$$
\begin{aligned}
2 x_{1}-x_{2} & =1 \\
-x_{i-1}+2 x_{i}-x_{i+1} & =0 \quad(i=2,3, \ldots, n-1) \\
-x_{n-1}+2 x_{n} & =1
\end{aligned}
$$

for $n=20$. Start with $\mathbf{x}^{(\mathbf{0})}=\mathbf{0}$ and terminate the iteration when

$$
\frac{\left\|\mathbf{x}^{(\mathbf{k})}-\mathbf{x}^{(\mathbf{k}-1)}\right\|_{\infty}}{\left\|\mathbf{x}^{(\mathbf{k})}\right\|}<10^{-6}
$$

(The exact solution is $x_{i}=1$ for all i.) What is the accuracy achieved? Compare the computer time required for GaussSeidel and Gauss elimination.
[10] Apply the Jacobi method to previous problem for 100 iterations and find the number of Gauss-Seidel iterations that gives the same accuracy.
[11] Solve the system

$$
\left[\begin{array}{cccc}
2 & 1 & -1 / 2 & 8 \\
6 & 2 & 8 & 14 \\
1 & -6 & 10 & 9 \\
2 & 11 & 3 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
4 \\
12 \\
1 \\
4
\end{array}\right]
$$

by Gauss-Seidel iteration. Take $\mathbf{x}^{(\mathbf{0})}=\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]^{T}$.
[12] Apply Jacobi and Gauss-Seidel iteration to the problem $\mathbf{A} \overrightarrow{\mathbf{x}}=\left[\begin{array}{lll}8 & 8 & 29\end{array}\right]^{T}$ where

$$
\mathbf{A}=\left[\begin{array}{ccc}
8 & 2 & 1 \\
10 & 4 & 1 \\
50 & 25 & 2
\end{array}\right]
$$

with the initial guess $\mathbf{x}^{(0)}=\left[\begin{array}{lll}-1 & 1 & 0\end{array}\right]^{T}$. How many iterations does it take for these to converge to 10^{-4} accuracy?
[13] Solve the system $\mathbf{A} \vec{x}=\vec{b}$, where

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 20 & -400 \\
0.2 & -2 & -20 \\
-0.04 & -0.2 & 1
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
1 \\
0.2 \\
0.05
\end{array}\right], \quad \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] .
$$

by Gauss algorithm.
[14] Solve the following system $\mathbf{A} \vec{x}=\vec{b}$, where

$$
\mathbf{A}=\left[\begin{array}{lll}
2 & 4 & 6 \\
3 & 2 & 1 \\
4 & 1 & 2
\end{array}\right], \quad \vec{b}=\left[\begin{array}{l}
4 \\
2 \\
3
\end{array}\right], \quad \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

by Gauss algorithm with pivoting.
[15] Consider the linear equation $\mathbf{A} \vec{x}=\vec{b}$, where

$$
\mathbf{A}=\left[\begin{array}{ccc}
2 & -1 & 3 \\
-4 & 5 & -4 \\
6 & 9 & a
\end{array}\right], \quad a \in \Re, \quad \vec{b}=\left[\begin{array}{c}
12 \\
-24 \\
-6
\end{array}\right]
$$

Perform the $\mathbf{L U}$-decomposition, compute the determinant of \mathbf{A}, and decide for which values of a the matrix is nonsingular. Provide the solution for $a=3$.
[16] Find the inverse matrix of regular matrix

$$
\mathbf{A}=\left[\begin{array}{lll}
3 & 1 & 6 \\
2 & 1 & 3 \\
1 & 1 & 1
\end{array}\right]
$$

using Gauss algorithm.
[17] For given matrix

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 4 & 1 & 3 \\
0 & -1 & 2 & -1 \\
3 & 14 & 4 & 1 \\
1 & 2 & 2 & 9
\end{array}\right]
$$

find the factorization $A=L U$, where L lower triangle and U upper triangle with unit diagonal. Using factorization solve the system $\mathbf{A} \vec{x}=\vec{b}$, where $\vec{b}=\left[\begin{array}{llll}9 & 0 & 22 & 14\end{array}\right]^{T}$.
[18] For tridiagonal matrix

$$
\mathbf{A}=\left[\begin{array}{ccccc}
4 & 1 & 0 & 0 & 0 \\
8 & 5 & -2 & 0 & 0 \\
0 & -3 & -1 & 5 & 0 \\
0 & 0 & -9 & 13 & -4 \\
0 & 0 & 0 & -2 & -3
\end{array}\right]
$$

find $L U$ factorization with unit diagonal in L and then find the solutions of $\mathbf{A} \vec{x}=\vec{b}$, where $\overrightarrow{\mathbf{b}}=\left[\begin{array}{lllll}1 & 0 & 1 & 0 & 1\end{array}\right]^{T}$.
Hint: If given tridiagonal matrix

$$
\mathbf{A}=\left[\begin{array}{ccccc}
b_{1} & c_{1} & 0 & \cdots & 0 \\
a_{1} & b_{2} & c_{2} & & 0 \\
0 & a_{2} & b_{3} & \ddots & 0 \\
\vdots & & \ddots & \ddots & c_{n-1} \\
0 & \cdots & 0 & a_{n-1} & b_{n}
\end{array}\right]
$$

factorizes in two matrices of form

$$
\mathbf{L}=\left[\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
\alpha_{2} & 1 & 0 & & 0 & 0 \\
0 & \alpha_{3} & 1 & & 0 & 0 \\
\vdots & & & & & \\
0 & \cdots & 0 & & \alpha_{n} & 1
\end{array}\right]
$$

and

$$
\mathbf{U}=\left[\begin{array}{cccccc}
\beta_{1} & \gamma_{1} & 0 & \ldots & 0 & 0 \\
0 & \beta_{2} & \gamma_{2} & & 0 & 0 \\
0 & 0 & \beta_{3} & & 0 & 0 \\
\vdots & & & & & \\
0 & 0 & 0 & & 0 & \beta_{n}
\end{array}\right] \quad\left(\beta_{1} \beta_{2} \ldots \beta_{n} \neq 0\right)
$$

By comparing corresponding elements of matrix A and matrix

$$
\mathbf{L U}=\left[\begin{array}{cccccc}
\beta_{1} & \gamma_{1} & 0 & \cdots & 0 & 0 \\
\alpha_{2} \beta_{1} & \alpha_{2} \gamma_{1}+\beta_{2} & \gamma_{2} & & 0 & 0 \\
0 & \alpha_{3} \beta_{2} & \alpha_{3} \gamma_{2}+\beta_{3} & & 0 & 0 \\
\vdots & & & & & \\
0 & 0 & 0 & & \alpha_{n} \beta_{n-1} & \alpha_{n} \gamma_{n-1}+\beta_{n}
\end{array}\right]
$$

we get the following recursive formulas for determination of elements $\alpha_{i}, \beta_{i}, \gamma_{i}$:

$$
\begin{array}{ll}
\beta_{1}=b_{1}, & \gamma_{i-1}=c_{i-1}, \\
\alpha_{i}=\frac{a_{i}}{\beta_{i-1}}, & \beta_{i}=b_{i}-\alpha_{i} \gamma_{i-1},
\end{array} \quad(i=2,3, \ldots, n),
$$

[19] In the numerical treatment of ordinary differential equations one encounters the tridiagonal $n \times n$-matrices

$$
\mathbf{A}=\left[\begin{array}{cccccc}
2 & -1 & & & & \\
-1 & 2 & -1 & & & \\
& -1 & 2 & -1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & -1 & 2 & -1 \\
& & & & -1 & 2
\end{array}\right]
$$

Perform a few steps of $\mathbf{L U}$ decomposition and guess the general formula for the coefficient of \mathbf{L} and \mathbf{U}. Repeat the same for the (symmetric) $\mathbf{L D L}^{\mathbf{T}}$ decomposition.

Hint: See the solution of previous problem.
[20] For given

$$
\mathbf{A}=\left[\begin{array}{cccc}
-3 & 5 & -11 & -13 \\
2 & -1 & 4 & 7 \\
6 & -6 & 12 & 24 \\
3 & 1 & -2 & 8
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
9 \\
-2 \\
-6 \\
5
\end{array}\right]
$$

by Gauss algorithm with pivoting define the permutation matrix P and triangle matrices L and U in the factorization $L R=P A$. Find the solution of system $\mathbf{A} \vec{x}=\vec{b}$ using obtained factorization.
[21] Solve the following system

$$
\begin{aligned}
10 x_{1}+3 x_{2}-x_{3} & =12 \\
-x_{1}+5 x_{2}-x_{3} & =3 \\
x_{1}+2 x_{2}+10 x_{3} & =13
\end{aligned}
$$

by Jacobi iterative method.
[22] Given a system of linear equations

$$
\begin{aligned}
& 5 x_{1}-x_{2}+x_{3}+3 x_{4}=2 \\
& 5 x_{2}+2 x_{3}-x_{4}=0 \\
& x_{1}-2 x_{2}+3 x_{3}+x_{4}=4 \\
& x_{1}-x_{2}+3 x_{3}+4 x_{4}=10
\end{aligned}
$$

Form the Gauss-Seidel method and explore its convergency.
[23] Solve the following set of equations by use of determinants (Cramer's rule):

$$
\begin{aligned}
& 1.4 x_{1}+2.3 x_{2}+3.7 x_{3}=6.5 \\
& 3.3 x_{1}+1.6 x_{2}+4.3 x_{3}=10.3 . \\
& 2.5 x_{1}+1.9 x_{2}+4.1 x_{3}=8.8
\end{aligned}
$$

[24] Solve the previous set of equations by Gauss reduction.
[25] Show that the equations

$$
\begin{gathered}
\omega x_{1}+3 x_{2}+x_{3}=5 \\
2 x_{1}-x_{2}+2 \omega x_{3}=3 \\
x_{1}+4 x_{2}+\omega x_{3}=6
\end{gathered}
$$

posses a unique solution when $\omega \neq \pm 1$, that no solution exists when $\omega=-1$, and that infinitely many solutions exist
when $\omega=1$. In addition, investigate the corresponding situation when the right-hand members are replaced by zeros.
[26] Solve the following set of equations
$\left[\begin{array}{llll}8.467 & 5.137 & 3.141 & 2.063 \\ 5.137 & 6.421 & 2.617 & 2.003 \\ 3.141 & 2.617 & 4.128 & 1.628 \\ 2.063 & 2.003 & 1.628 & 3.446\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}29.912 \\ 25.058 \\ 16.557 \\ 12.690\end{array}\right]$.
and find \mathbf{A}^{-1} by
a) Gauss reduction,
b) Gauss-Jordan reduction.
[27] Solve the equations

$$
\begin{aligned}
& 10.01 x_{1}+6.99 x_{2}+8.01 x_{3}+6.99 x_{4}=32 \\
& 6.99 x_{1}+5.01 x_{2}+5.99 x_{3}+5.01 x_{4}=23 \\
& 8.01 x_{1}+5.99 x_{2}+10.01 x_{3}+8.99 x_{4}=33 \\
& 6.99 x_{1}+5.01 x_{2}+8.99 x_{3}+10.01 x_{4}=31
\end{aligned}
$$

by arbitrary direct and an arbitrary iterative method.
[28] Using direct methods for solution of system of linear equations
a) Gauss reduction,
b) Gauss-Jordan method,
c) $\mathbf{L U}$ decomposition, and iterative methods
a) Jacobi method,
b) Gauss-Seidel method, compute the forces in members of statically determined plane grid given on the next figure.
Remark: Compare the results. Perform control computation using program STRESS, SAP or similar one.
[29] *Solve the system of linear equations by Cramer's rule supposing that each determinant is evaluated by the standard scheme (expansion by minors) as the sum of $(n-1)$! products of n factors each. Estimate how many multiplications are then required to solve $\mathbf{A} \vec{x}=\vec{b}$ for $n=10,25,30,50,100$. Translate this into the computer time if each multiplication (and all associated other operations) takes $1 \mu s e c$. For large n use Sterling's formula

$$
n!\sim \sqrt{2 \pi n} \exp ^{-n} n^{n}
$$

(There are about $3 \times 10^{15} \mu s e c$ in a century. The sun will burned out before the computation with $n=100$ is complete).
[30] * An "x-matrix" has a pattern of nonzero elements that forms an " x " as the following 5×5 and 6×6 examples.

$$
\left[\begin{array}{lllll}
X & X & X & X & X \\
& X & X & X & \\
& & X & & \\
& X & X & X & \\
X & X & X & X & X
\end{array}\right]\left[\begin{array}{llllll}
X & X & X & X & X & X \\
& X & X & X & X & \\
& & X & X & & \\
& & X & X & & \\
& X & X & X & X & \\
X & X & X & X & X & X
\end{array}\right]
$$

a) In the spirit of Gauss elimination describe an algorithm to transform a general matrix into this form by solving a sequence 2 by 2 problems.
b) Show how one can back substitute in an x-matrix by solving a sequence of 2×2 problems.
c) Make operations counts for parts a) and b) and compare the work of this scheme with ordinary Gauss elimination. Ignore pivoting.

[^0][31] * Consider a system of equations that "almost" breacks up into two parts:
\[

$$
\begin{aligned}
& \sum_{j=1}^{n} a_{i j} x_{j}+\sum_{j=1}^{m} e_{i j} y_{j}=c_{i} \quad i=1,2, \ldots, n \\
& \sum_{j=1}^{n} h_{i j} x_{j}+\sum_{j=1}^{m} b_{i j} y_{j}=c_{i+n} \quad i=1,2, \ldots, m .
\end{aligned}
$$
\]

The matrices E and H are "small" compared to A and B. Suppose that A is much smaller than B and that B is heavily diagonally dominant. So one proceeds to apply the following scheme:
step 1 Guess at y and solve for x exactly from the first set of equations.
step 2 Given this \mathbf{x}, solve for an improved estimate of \mathbf{y} by one iteration of Gauss-Seidel on the second set of equations.
Then iterate steps 1 and 2 to take a vector pair $\left(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}\right.$ into ($\mathbf{x}^{(k+1)}, \mathbf{y}^{(k+1)}$.
a) Express the original linear system in matrix form;
b) Express steps 1 and 2 in matrix form;
c) Express the iteration scheme in matrix form;
d) Explore the matrix which governs the convergence of this scheme.
Make a constructional model of this mathematical model. Make a dynamical analysis of the system (eigenvalues). Analyze the influence of matrices E and H on the eigenfrequence of the system.

[^0]: * Problem could be used as basis for semester research paper
 * Problem could be used as basis for semester research paper

