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ASSIGNMENTS

LESSON VI

Non-linear Equations

and Systems of Equations

1. Find the real root of equation

x3 − x− 1 = 0

by iteration method.

2. The function
x → g(x) =

x3

0.05− e−x

1+x

has a local minimum in x = a ∼= 2.5. Find its value by
iterative method with accuracy ε = 10−3.

3. For function
f(x) = x2 − ax(log x− 1)

there is one value a = A so that f ′(x) = f ′′(x) = 0, for some x.
Determine A with ε = 10−3.

4. Determine a square root of positive number a by Newton
method with arbitrary accuracy.
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5. Find a root of equation

f(x) = e−x − x = 0

with Determine a square root of positive number a by New-
ton method with ε = 5 · 10−2. by bisection.

6. Solve the equation

f(x) = x2 − ex + 2 = 0

with ε = 10−4. using secant method, and then regula-falsi
method.

7. Suppose the equation x2 +a1x+a2 possesses real roots α and
β. Show that the iteration

zk+1 = −(a1zk + a2)/zk

is stable at x = α if |α| > |β|, the iteration

zk+1 =
−a2

zk + a1

is stable at x = α if |α| < |β|, and the iteration

zk+1 = −(z2
k + a2)/a1

is stable at x = α if 2|α| < |α + β|.

8. Show that if the asymptotic convergence factor ρ of an it-
eration can be estimated in any way, then the formula

α ≈ zk+1 +
ρ

1− ρ
(zk+1 − zk)

can be used to accelerate the convergence of the iteration in
place of the Aitken ∆2 process, and also that latter process
is equivalent to estimating ρ by the ratio

zk+2 − zk+1

zk+1 − zk.
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9. The real root α of the equation x+log x = 0 lies between 0.56
and 0.57. Show that the iteration zk+1 = − log zk is unstable
at x = α, and verify this fact by calculation. Then show that
the iteration zk+1 = e−zk is stable at x = α, and determine α
to five places.

10. Solve the nonlinear equation

x + 1 = x4

by fixed-point iteration.
Hint: Start from the interval [0, 3]. Compare iteration

formulas
xk+1 = x4

k − 1

and
xk+1 = 4

√
xk + 1.

(In the second case the fixed point is attractive while it is re-
pulsive in the first case).

11. Write a FORTRAN/Pascal/C subprogram to implement
the bisection method, where BISECT is the name of sub-
routine, F name of non-linear function [A,B] is the interval
containing a zero, and EPS is accuracy required in the zero.
The value of the BISECT is the zero found.
Apply the subprogram to compute zeros of the following

functions:
a) sin(x− 0.23450 + 0.5;
b) xe−x− 0.2;
c) log(1 + x2)− 1

x+1 ;
d) cos x−

√

|x|;
e) x4 − 4x2 + 2x− 13;
b) x− (8x3 − 12x2) log |10.5− x| − 6;
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Choose a value of EPS between 10−2 and 10−5. A and B
determine graphically.

12. Write a FORTRAN/Pascal/C subprogram to implement
the regula falsi method with name RF , F name of the
function,[A,B] is the interval containing a zero, and EPS
is accuracy required in the zero.Apply the subprogram to
compute zeros of the functions a) through f) of previous
problem, and of
a) x10 − 0.01(start with A = 0, B = 1;
b) tan x− 0.05(start with A = 0, B = 1.55;
c) 10e−10x − 1/over10 (start with A = 0, B = 2.

13. Write a FORTRAN/Pascal/C subprogram to implement
Newton’s method named NEWTON , with arguments F -
function name, FP - name of its derivative, GUESS-initial
estimate of the zero, and EPS is the accuracy desired. The
value of function is the zero found. Apply the subprogram
to compute zeros of the following functions:
a) x2(guess x = 1);
b) x10 (guess x = 1 or 2);
c) x3 − 3x + 3x2 − 1 (guess x = 0 or 20);
d)

√

|x− 1|(guess x = 0 or 2));
e) (x2 + 1

x )ex+sin x cos(x log(1 + x2)) − 0.1 (guess x = 0.01,−8 or
12);

f) x6 − 6x5 + 15x4 − 20x3 + 15x2 − 6x + 1 (guess x = 2 or 20);
g) | sin x− 0.2| (guess x = 0.1 or 1.57);
h) 5

√

x− 0.2)(x− 0.3)2 (guess x = 0 or 0.25).
Choose a value of EPS between 10−4 and 10−5.

14. Write a FORTRAN/Pascal/C subprogram to implement
the secant method named SECANT , and arguments GUESS1
and GUESS2, two guesses for the zero, and F -function name
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and EPS-accuracy desired. Apply the subprogram to the
functions given in previous problem.

15. Write a FORTRAN/Pascal/C subprogram to implement
the fixed point method named FIXPT , where the argu-
ments are F -function name, GUESS-initial value, EPS- de-
sired accuracy. Apply the subprogram to find zeros of the
functions:
a) x2 − x(guess x = 0.1, 0.4,−0.2,−0.8,−1.5, 1.5);
b) sin x− 0.25 (guess x = 0.2);
c) cos x− 0.25 (guess x = 1.3, 10.75,−4.1, 732.7);
d) x− ex(guess x = 0., 0.75, 20);
e) x + sin x− x3

3 (guess x = 0.25).
Take EPS from 10−2 to 10−4.

16. The problem ”Solve x2 − x − 2 = 0” can be reformulated in
several ways for fixed point iteration, including

x = x2 − 2,

x =
√

x + 2,

x = 1 +
2
x

,

x = x− x2 − x− 2
4

.

Explore the convergence of given iteration process.
For the following equations reformulate the fixed point it-

erations so that those converge:
a) x3 − x + 1 = 0;
b) ex − sin x = 0;
c) log(1 + x)− x2 = 0 (for both zeros);
d) ex − 3x2 = 0 (for both zeros).

17. In the year 1225 explored Leonardo of Pisa the equation

f(x) = x3 + 2x2 + 10x− 20 = 0
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and got the root x = 1.368808107, using unknown method.
This result was outstanding for that time.
Solve the equation of Leonardo by reduction to the form

x = F (x) (fixed point method).
Hint: Take

x = F (x) =
20

x2 + 2x + 10
, i.e.

xn =
20

x2
n−1 + 2xn−1 + 10

, and x0 = 1.

18. Apply the concept of extrapolation on the limit value in
order to improve the iterative method (Aitken ∆2 method).
Hint: The error of computation is (after n iterations)

en = r − xn = F (r)− F (xn−1) = F ′(ξ)(r − xn−1) = F ′(ξ)ek−1,

i.e.
en ≈ F ′(r)en−1.

Without knowing r and F ′(r), one can say

r − xn+1 ≈ F ′(r)(r − xn)

r − xn+2 ≈ F ′(r)(r − xn+1),

and get, by division

r − xn+1

r − xn+2
∼ r − xn

r − xn+1
.

Finally, one gets

r ≈ xn+2 −
(xn+2 − xn+1)2

xn+2 − 2xn+1 + xn
= xn+2 −

(∆xn+1)2

∆2xn
.

Thus, if three successive iterations xk, xk+1, and xk+2 are known,
this relation affords an extrapolation which may be expected to
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provide an improved estimate of r, when the iteration con-
verges. This procedure for accelerating convergence is often
called Aitken’s ∆2 process.

19. The method of Steffenson is the modification of iterative
method by Aitken’s method in every third iteration. Apply
this procedure to Leonardo equation

f(x) = x3 + 2x2 + 10x− 20 = 0.

Hint: One gets three first values taking x0 = 1, by fixed
point method, using formula

xk =
20

x2
k−1 + 2xk−1 + 10

, k = 1, 2

and the third value using Aitken’s method

xk = xk−1 −
(xk−1 − xk−2)2

xk−1 − 2xk−2 + xk−3
k = 3, 6, . . .

This process is repeated until the wanted accuracy ε is
achieved.

20. Apply the Newton method on the equation of Leonardo of
Pisa

f(x) = x3 + 2x2 + 10x− 20 = 0,

with accuracy ε = 10−k (k = 1, 2, . . . , 10). Compare the num-
ber of function and first derivative of function evaluations.
Write a procedure in FORTRAN/Pascal/C. Compare with
the results obtained by program Mathematica.

21. Prove that formula for obtaining a square root

xn =
1
2
(xn−1 +

Q
xn−1

)
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is a special case of Newton iteration formula.
Hint: Take f(x) = x2 −Q = 0.

22. Derive the iterative formula for calculation of p−th root of
Q

xn = xn−1 −
xn−1 −Q
p · xp−1

n−1

,

as a special case of Newton formula.

23. Apply regula falsi method to equation of Leonardo of Pisa

f(x) = x3 + 2x2 + 10x− 20 = 0.

The starting values x0 and x1 are to be defined graphically.

24. Consider the system

6x = cos x + 2y

8y = xy2 + sin x.

Using fixed-point iterations

xk+1 =
1
6
(cos xk + 2yk)

yk+1 =
1
8
(xky2

k + sin xk),

with x0, y0 ∈ [0, 1], solve the system.

25. Compute a solution of the equations

f1(x, y) := x3 − y3 − x2y − 7 = 0

f2(x, y) := x2 + y2 − 4 = 0

using Newton’s iteration, starting from the point on the
circle with radius 2 as an initial guess, namely (x0, y0) = (2, 0)
and f(x0, y0) = (1, 0).
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Hint: Formal expression of Newton iteration is
[

xk+1

yk+1

]

=
[

xk
yk

]

− J−1
[

f1

f2

]

,

i.e.

J
[

∆x
∆y

]

= −
[

f1

f2

]

,

where J Jacobi matrix (for two unknowns) of form

J =
[ δf1

δx
δf1
δy

δf2
δx

δf2
δy

]

,

i.e. for given case

J =
[

3x2 − 2xy −3y2 − x2

2x 2y

]

,

what gives the system of linear equations for the first Newton
correction

[

12 −4
4 0

] [

∆x
∆y

]

= −
[

1
0

]

.

This yields the new iterate
[

∆x
∆y

]

=
[

0
1
4

]

,
[

x1

y1

]

=
[

x0

y0

]

+
[

∆x
∆y

]

=
[

2
1
4

]

, f
(

x1

y1

)

=
[

−1/64
1/16

]

.

These vectors lead to the new linear system
[

11 −4 3
16

4 1
2

] [

∆x
∆y

]

= −
[

− 1
8

1
16

]

.

The result and the other quantities of the Newton iteration are
found in the following table. The vectors in the fourth step
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are already so close to the solution that the residues heavily
depend on the rounding errors.
k xk yk f(xk) f(yk) ∆x ∆y

0 2.0 0.0 1.0 0.0 0.0 0.25
1 2.0 0.25 −1/64 1/16 −1.141 · 10−2−3.371 · 10−2

2 1.98859 0.2163−1.60 · 10−3 1.27 · 10−3 −2.135 · 10−4−9.646 · 10−4

31.988374980.21532749−1.16 · 10−6 9.76 · 10−7−1.663 · 10−7 −7.306 · 10−7

41.988374810.21532676 < 10−11 < 10−11 < 10−12 < 10−13


